Intracellular sites of synthesis of cytochrome P-450 and the subsequent incorporation of it into membrane structures of the endoplasmic reticulum (ER) in rat hepatocytes have been studied using an antibody monospecific for phenobarbital-inducible cytochrome P-450. The cytochrome is synthesized mainly on the "tightly bound" type of membrane-bound ribosomes whose release from the membrane requires treatment with puromycin in a high salt buffer (500 mM KCI, 5mM MgCl2, and 50 mM Tris-HCL [pH 7.5]). Subsequently the cytochrome is incorporated directly into the rough ER membranes with its major part exposed to the outer surface to the membrane and accessible to proteolytic enzymes added externally. The newly synthesized molecules, which appeared first in the rough membrane, are translocated to the smooth membrane, and are then distributed evenly between the two types of microsomeal membranes in approximately 1 h. Administration of cycloheximide, an inhibitor of protein biosynthesis, did not significantly inhibit the transfer of the enzyme from the rough to the smooth ER. It is suggested, therefore, that the translocation of the newly synthesized cythochrome P-450 between the rough and smooth microsomes is mainly due to the lateral movement of the molecules in the plane of the membranes rather than to the attachment and detachment of the ribosomes on the microsomal membranes after the ribosomal cycle for protein synthesis.

This content is only available as a PDF.