Rat liver rough microsomes (RM) contain two integral membrane proteins which are not found in smooth microsomes (SM) and appear to be related to the presence of ribosome-binding sites. These proteins, of molecular weight 65,000 and 63,000, were designated ribophorins I and II, respectively. They were not released from the microsomal membranes by alkali or acid treatment, or when the ribosomes were detached by incubation with puromycin in a high salt medium. The anionic detergent sodium deoxycholate caused solubilization of the ribophorins, but neutral detergents led to their recovery with the sedimentable ribosomes. Ribosomal aggregates containing both ribophorins, but few other membrane proteins, were obtained from RM treated with the nonionic detergent Kyro EOB (2.5 X10(-2) M) in a low ionic strength medium. Sedimentation patterns produced by these aggregates resembled those of large polysomes but were not affected by RNase treatment. The aggregates, however, were dispersed by mild trypsinization (10 microgram trypsin for 30 min at 0 degrees C), incubation with deoxycholate, or in a medium of high salt concentration. These treatments led to a concomitant degradation or release of the ribophorins. It was estimated, from the staining intensity of protein bands in acrylamide gels, that in the Kyro EOB aggregates there were one to two molecules of each ribophorin per ribosome. Sedimentable complexes without ribosomes containing both ribophorins could also be obtained by dissolving RM previously stripped of ribosomes by puromycin-KCl using cholate, a milder detergent than DOC. Electron microscope examination of the residue obtained from RM treated with Kyro EOB showed that the rapidly sedimenting polysome-like aggregates containing the ribophorins consisted of groups of tightly packed ribosomes which were associated with remnants of the microsomal membranes.

This content is only available as a PDF.