Milk fat globule membranes (MFGM) and rough endoplasmic reticulum (RER) membranes were isolated from milk and lactating mammary gland from the cow and were characterized by biochemical and electron microscope methods in terms of gross composition (proteins, phospholipids, neutral lipids, cholesterol, RNA, and DNA) and purity. Both fractions contained significant amounts of a b-type cytochrome with several properties similar to those of cytochrome b5 from liver, as well as a rotenone-insensitive NADH- and NADPH-cytochrome c reductase. The b-type cytochrome content in the apical plasma membrane-derived MFGM was of the same order of magnitude as it was in RER membranes. It was characterized by a high resistance to extraction by low- and high-salt concentrations and nonionic detergents. MFGM contained much more flavin and much higher activities of xanthine oxidase than the RER membranes. The same redox components were found in MFGM and mammary RER from women, rats, mice, and goats, but in absolute contents great differences between the species were noted. The cytochromes described here differed from liver cytochrome b5 in some spectral properties. The alpha-band of the reduced hepatic cytochrome b5 is asymmetric with a maximum at 555 nm that is split into two distinct peaks at low temperatures. The alpha-band of the b-type cytochromes from MFGM and mammary RER appears as one symmetrical peak at about 560 nm that is not split at low temperatures. When treated with cyanide, MFGM and mammary microsomes showed difference spectra of a reduced b-type cytochrome. Under the same conditions, liver microsomes gave a completely different spectrum. These findings demonstrate the presence of a b-type cytochrome and associated redox enzymes in MFGM, i.e., a derivative of the apical cell surface membrane that is regularly used for envelopment of the milk fat globule during secretion.

This content is only available as a PDF.