In the retina of the frog and certain other animals, melanin pigment granules move in response to light so as to shield photoreceptor outer segments. The granules are contained within the cells of the pigment epithelium (PE) which lie as a continuous sheet between the neural retina and the choroid. Moderate illumination of the eye causes the melanin granules to move from a region within a PE cell body into numerous fingerlike extensions of the cell which interdigitate with the receptor outer segments. This migration takes many minutes and is reversed when the light falling on the eye increases in intensity. Several reviews are concerned with the early descriptions of this phenomenon (6,30) and with more recent experiments (1,5,19). The mechanism of the pigment granule motion is undetermined although there are studies concerning PE ultrastructure (8, 23, 31), scanning electron microscopy of the fingerlike extensions of the PE cells (27), the role of the PE in photoreceptor phagocytosis (32), the nature of the pigment granules (19), and the action spectrum of the light which induces the migration (16). This study reports the presence of a system of microfilaments associated with the pigment granules in the fingerlike extensions processes of the PE cells. We demonstrate by heavy meromyosin (HMM) labeling that the filaments are actinlike in character and suggest that these filaments could be responsible for the migration of the melanin pigment granules.

This content is only available as a PDF.