The eggs of the surf clam Spisula solidissima were artificially activated, homogenized at various times in cold 0.5 M MES buffer, 1mM EGTA at pH 6.5, and microtubule polymerization was induced by raising the temperature to 28 degrees C. In homogenates of unactivated eggs few microtubules form and no asters are observed. By 2.5 min after activation microtubules polymerize in association with a dense central cylinder, resulting in the formation of small asterlike structures. By 4.5 min after activation the asters formed in vitro contain a distinct centriole, and microtubules now radiate from a larger volume of granular material which surrounds the centriole. By 15 min (metaphase I) the granular material is more disperse and only loosely associated with the centriole. Microtubules are occasionally observed which appear to radiate directly from one end of the centriole. The organizing center can be partially isolated by centrifugation of homogenates of metaphase eggs and will induce aster formation if mixed with tubulin from either activated or unactivated eggs. Pretreatment of the eggs with colchicine does not prevent the formation of a functional organizing center. Complete spindles can also be obtained under polymerizing conditions by either homogenizing the eggs directly into warm buffer or by adding a warm high-speed supernate to spindles which have been isolated in a microtubule stabilizing medium. Extensive addition of new tubulin occurs onto the isolated spindles, resulting primarily in growth of astral fibers, although there occasionally appears to be growth of chromosomal fibers and of pole-to-pole fibers. Negatively stained aster microtubules have a strong tendency to associate side by side, and under some conditions distinct cross bridges can be observed. However, under other conditions large numbers of 300-400-A particles surround the microtubules; the presence of stain between particles can give the appearance of cross bridges.

This content is only available as a PDF.