A biochemical and cytochemical study has been made of the distribution of ATPase in mature and differentiating phloem cells of Nicotiana tabacum and of the substrate specificity and effects of fixation on enzyme activity. Homogenates of unfixed leaf midveins and midveins fixed in formaldehyde-glutaraldehyde were assayed for enzyme activity by determining the amount of Pi, liberated per milligram of protein from various substrates in a 30 min period at pH 7.2. In fresh homogenates, hydrolysis of ATP was not significantly different from that of ITP, CTP, and UTP. Hydrolysis of GTP was slightly higher than that of ATP. ATP hydrolysis by fresh homogenates was 17% more extensive than that of ADP, 76% more extensive than that of 5'-AMP, and was inhibited by fluoride and p-chloromercuribenzoate (PCMB). There was little or no hydrolysis of the competitive inhibitors 2'- and 3'-AMP nor with the alternate substrates p-nitrophenylphosphate (PNP) or ß-glycerophosphate (ß-GP). In homogenates of material fixed in formaldehyde-glutaraldehyde for 1¼ h, ATPase activity was 13% preserved. Hydrolysis of ATP by fixed homogenates was not significantly different from that of ADP, 5'-AMP, ITP, CTP, and GTP. Hydrolysis of UTP was lower. Fluoride and PCMB inhibited fixed ATPase activity. The results of cytochemical localization experiments using a lead phosphate precipitation technique were in agreement with the biochemical results. Similar localization patterns were obtained with the nucleoside triphosphates ATP, CTP, GTP, ITP, and UTP. Activity was also localized with ADP and 5'-AMP but not with the competitive inhibitors 2'- and 3'-AMP, nor with PNP or ß-GP. Little or no reaction product was deposited in other controls incubated without substrate or with substrate plus fluoride, PCMB, or N-ethylmaleimide. ATPase activity was demonstrated chiefly at the plasma membrane of mature and differentiating phloem cells and was associated with the P-protein of mature sieve elements. It is suggested that the phloem transport system derives its energy from the demonstrated nucleoside triphosphatase activity.
Article|
January 01 1974
A BIOCHEMICAL AND CYTOCHEMICAL STUDY OF ADENOSINE TRIPHOSPHATASE ACTIVITY IN THE PHLOEM OF NICOTIAN A TABACUM
Jamison Gilder,
Jamison Gilder
From the Department of Biological Sciences, University of California at Santa Barbara, California 93106.
Search for other works by this author on:
James Cronshaw
James Cronshaw
From the Department of Biological Sciences, University of California at Santa Barbara, California 93106.
Search for other works by this author on:
Jamison Gilder
From the Department of Biological Sciences, University of California at Santa Barbara, California 93106.
James Cronshaw
From the Department of Biological Sciences, University of California at Santa Barbara, California 93106.
Dr. Gilder's present address is the Department of Anatomy, Yale University School of Medicine, New Haven, Connecticut 06510.
Received:
July 09 1973
Revision Received:
September 24 1973
Online Issn: 1540-8140
Print Issn: 0021-9525
Copyright © 1974 by The Rockefeller University Press
1974
J Cell Biol (1974) 60 (1): 221–235.
Article history
Received:
July 09 1973
Revision Received:
September 24 1973
Citation
Jamison Gilder, James Cronshaw; A BIOCHEMICAL AND CYTOCHEMICAL STUDY OF ADENOSINE TRIPHOSPHATASE ACTIVITY IN THE PHLOEM OF NICOTIAN A TABACUM . J Cell Biol 1 January 1974; 60 (1): 221–235. doi: https://doi.org/10.1083/jcb.60.1.221
Download citation file: