The distribution of leucine-3H in neurons was determined by electron-microscope radioautography after infusion of label into the spinal cord or sensory ganglia of regenerating newts. In the nerve cell bodies 3 days after infusion, the highest concentration of label per unit area occurred over the rough-surfaced endoplasmic reticulum. In the large brachial nerves, the silver grains were not distributed uniformly in the axoplasm, indicating that the labeled materials are restricted in their movement to certain regions of the axon. Almost all of the radioautographic grains observed in myelinated nerves could be accounted for by the presence of a uniformly labeled band occupying the area 1500–9000 A inside the axolemma. This region of the axon was rich in microtubules and organelles while the unlabeled central core of the axon contained mainly neurofilaments. This observation supports the hypothesis that microtubules are related to axonal transport. In small, vesicle-filled nerve terminals in the blastema, labeled material was restricted to a thin zone a short distance beneath the plasma membrane while the central region of the terminal was largely unlabeled. The peripheral pattern of labeling in the nerve endings is consistent with successive addition of newly synthesized proteins at the periphery of the growth cone and release of substances such as trophic factors at the nerve terminal.

This content is only available as a PDF.