Hydrostatic pressure, when applied to segments of the small intestine of the salamander, causes a tremendous reduction in number of microvilli and a loss of the terminal web. The intestinal epithelium strips off from its deeper layers at the level of the basement membrane. When the pressure is released and this epithelial sheet is allowed to recover, the microvilli and its terminal web reappear. Stages in the reformation of microvilli are described. In the earliest stages, foci of dense material seem to associate with the cytoplasmic surface of the apical plasma membrane. From this material, filaments appear and their regrowth is correlated with the extension of the microvilli. We suggest that the dense material nucleates the assembly of the filaments which, in turn, appear instrumental in the redevelopment of microvilli. This concept is supported by the existing literature. Further, since neither the microvilli nor the terminal web reappear on any surface but the apical surface, even though the apical and basal surfaces are bathed with the same medium, we suggest that information in the membrane itself or directly associated with the membrane dictates the distribution of the dense material which leads to the formation of the microvilli and ultimately to the polarity of the cell.

This content is only available as a PDF.