A time sequence study of intracellular movement of labeled lipid in the liver was carried out on fasted and ethanol-treated rats injected with either palmitate-3H or glycerol-3H by electron microscopic radioautography. The elimination of water-soluble lipid precursors during specimen preparation was checked and found to be complete. The labeled lipid product in the tissue was identified as mostly triglyceride. A dehydration procedure was adapted to minimize the loss of lipid during specimen preparation. At 2 min after injection, the earliest time interval studied, both precursors were found to have penetrated the liver cells, and the label was found over both rough and smooth elements of the endoplasmic reticulum, which is the site of glyceride esterification. From 5 min on, in fasted and especially in ethanol-treated rats, the label was seen also over lipid droplets 0.5–2.0 µ in diameter, which represent "storage lipid" (slowly turning over compartment). Mitochondria became labeled mostly at later time intervals after injection. From 10 min on, concentration of label was seen over the Golgi apparatus, containing small osmiophilic particles. Association of label with groups of particles in smooth-surfaced vesicles and vacuoles in and near the Golgi apparatus and in the vicinity of the sinusoidal border was seen, both after palmitate-3H and glycerol-3H. It is proposed that these particles represent lipoproteins which are formed in the endoplasmic reticulum, "processed" in the Golgi apparatus, and transported in vacuoles to the sinusoid surface to be discharged into the circulation.

This content is only available as a PDF.