1. The presumptive cortical cells of hair in the undifferentiated matrix of the bulb contain mitochondria, agranular vesicles, and many small dense R.N.P. particles, but no keratin, pigment granules, or endoplasmic reticulum.

2. In the mid-bulb region intercellular adhesion is limited to small localised areas. Intercellular gaps are common and the cell surfaces are irregularly convoluted. The melanocyte processes penetrate the cell gaps. The relation between their pigment-bearing tips and the involutions of the cell membranes suggests an active phagocytosis of the tips.

3. Fibrous keratin first appears in loose parallel strands of fine filaments (ca. 60 A diameter) in the mid-bulb. The filaments, the long mitochondria, and elongated nucleus are all parallel to the long axis of the cell and the axis of the follicle.

4. At the level of the constriction of the bulb and above, a dense amorphous substance appears between the fine filaments and apparently acts as adhesive cement. The bundles of filaments now form well defined fibrils. The packing of the filaments within the fibrils is in places hexagonal and elsewhere in the form of "whorls."

5. At higher levels further filaments and interfilamentous cement are added together and the whole cytoplasmic space becomes packed with fibrils which finally condense to massive blocks of keratin. The residual cellular material occupies the interstices.

6. The addition of the interfilamentous substance is regarded as an essential factor in keratinisation. Keratin is considered to be a complex made of fine filaments (α-filaments) embedded in an amorphous substance (γ-keratin) which has the higher cystine content.

7. The wide-angle fibre-type x-ray pattern is thought to be due to scattering by the fine α-filaments and some low angle lateral spacings to the filament-plus-cement structure.

This content is only available as a PDF.