Electron microscopic evidence is presented that the early response to denervation ("simple atrophy") of the semitendinosus m. of the frog is characterized by a greater prominence of the sarcoplasmic reticulum and by the presence, in the interfibrillar spaces, of mitochondria which are more numerous and smaller than in normal muscle. In contrast with the dynamic changes of the sarcoplasmic structural components, the myofibrils showed a progressive decrease in diameter after denervation and throughout the period studied. By carrying out tissue fractionation experiments, the yield of microsome-protein was found significantly greater in the denervated muscles, as compared with the contralateral controls, in this initial stage. Under the conditions attending the overdevelopment of the sarcoplasmic reticulum (SR), denervated semitendinosus m. incorporated valine-C14 into proteins more actively than the control pairs. The denervated muscles also showed an increase in the number of freely scattered and membrane-bound ribosomes and of polyribosomes, suggesting a more active synthesis of the SR membranes. Pronounced atrophy of the myofibrils, disorganization of the SR, and an increased number of ribonucleoprotein particles lying in the enlarged interfibrillar spaces were the main ultrastructural features of "degenerative atrophy" in frog muscle in the late periods after denervation. The probably adaptive character of the early changes occurring on denervation of frog muscle is discussed.

This content is only available as a PDF.