Skip to Main Content
Skip Nav Destination

Fas receptor is a member of the tumor necrosis factor-α family of death receptors that mediate physiologic apoptotic signaling. To investigate the molecular mechanisms regulating calcium mobilization during Fas-mediated apoptosis, we have analyzed the sequential steps leading to altered calcium homeostasis and cell death in response to activation of the Fas receptor. We show that Fas-mediated apoptosis requires endoplasmic reticulum–mediated calcium release in a mechanism dependent on phospholipase C-γ1 (PLC-γ1) activation and Ca2+ release from inositol 1,4,5-trisphosphate receptor (IP3R) channels. The kinetics of Ca2+ release were biphasic, demonstrating a rapid elevation caused by PLC-γ1 activation and a delayed and sustained increase caused by cytochrome c binding to IP3R. Blocking either phase of Ca2+ mobilization was cytoprotective, highlighting PLC-γ1 and IP3R as possible therapeutic targets for disorders associated with Fas signaling.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal