TgGAP50 (green) anchors TgMyoA (red) in the inner membrane.
The authors began by isolating and raising antibodies to the inner membrane, where the myosin-A (TgMyoA) responsible for motility is thought to hang out. They found TgGAP45, a protein of unknown function. Immunoprecipitation of TgGAP45 yielded TgMyoA, its associated light chain, and TgGAP50, an integral membrane protein. The TgGAP45, TgMyoA, and light chain assemble in the cytoplasm and then apparently meet the TgGAP50 in the inner membrane complex.
This inner membrane complex lies just underneath the plasma membrane. Myosin-A and perhaps short actin filaments lie between the two membranes, with actin filaments anchored to the extracellular substrate via an adhesin. Gaskins et al. suggest that TgMyoA attaches to both the actin and, via TgGAP50, to the inner membrane complex. A stable cytoskeletal matrix known to exist on the other side of the inner membrane may immobilize TgGAP50 itself. TgMyoA may either walk along the actin filament, pulling the cell body closer to any adhesion sites, or it may ride forward near the front of any growing actin filaments. Exactly how this leads to overall cell movement, especially movement that is directional, is not yet clear. ▪