This paper reports a study by phase contrast and electron microscopy of changes observed in the thyroid gland of the rat at 1, 2, 12, and 24 hours following an injection of thyrotrophic hormone. Examination by phase contrast microscopy reveals that follicular cells contain numerous colloid droplets 1 and 2 hours after injection. By 12 and 24 hours, the colloid droplets are no longer present, and individual follicles appear to be subdividing into smaller units. The droplets are assumed to contain newly synthesized colloid, and their development was studied by electron microscopy. During the period of active secretion, increase in number of the Golgi vesicles leads to enlargement of this organelle. At its periphery small colloid droplets appear to form from large Golgi vesicles. As they form, their content becomes more adielectronic, and fine dense particles less than 75 A in diameter appear in their matrix. Small- and medium-sized droplets lying in the apical region of the cell contain numerous dense particles scattered in their moderately adielectronic content. Large, mature droplets in the same region have a relatively dielectronic content resembling follicular colloid and no longer contain dense particles. The follicular cells appear to utilize apical pseudopodia to release the content of mature droplets into the follicular lumen. Other droplet-like inclusions occur in follicular cells, but they do not seem to be directly concerned with secretion.

This content is only available as a PDF.