Expression of transforming Ha-Ras L61 in NIH3T3 cells causes profound morphological alterations which include a disassembly of actin stress fibers. The Ras-induced dissolution of actin stress fibers is blocked by the specific PKC inhibitor GF109203X at concentrations which inhibit the activity of the atypical aPKC isotypes λ and ζ, whereas lower concentrations of the inhibitor which block conventional and novel PKC isotypes are ineffective. Coexpression of transforming Ha-Ras L61 with kinase-defective, dominant-negative (DN) mutants of aPKC-λ and aPKC-ζ, as well as antisense constructs encoding RNA-directed against isotype-specific 5′ sequences of the corresponding mRNA, abrogates the Ha-Ras–induced reorganization of the actin cytoskeleton. Expression of a kinase-defective, DN mutant of cPKC-α was unable to counteract Ras with regard to the dissolution of actin stress fibers. Transfection of cells with constructs encoding constitutively active (CA) mutants of atypical aPKC-λ and aPKC-ζ lead to a disassembly of stress fibers independent of oncogenic Ha-Ras. Coexpression of (DN) Rac-1 N17 and addition of the phosphatidylinositol 3′-kinase (PI3K) inhibitors wortmannin and LY294002 are in agreement with a tentative model suggesting that, in the signaling pathway from Ha-Ras to the cytoskeleton aPKC-λ acts upstream of PI3K and Rac-1, whereas aPKC-ζ functions downstream of PI3K and Rac-1.
This model is supported by studies demonstrating that cotransfection with plasmids encoding L61Ras and either aPKC-λ or aPKC-ζ results in a stimulation of the kinase activity of both enzymes. Furthermore, the Ras-mediated activation of PKC-ζ was abrogated by coexpression of DN Rac-1 N17.