The Acanthamoeba castellanii myosin-Is were the first unconventional myosins to be discovered, and the myosin-I class has since been found to be one of the more diverse and abundant classes of the myosin superfamily. We used two-dimensional (2D) crystallization on phospholipid monolayers and negative stain electron microscopy to calculate a projection map of a “classical” myosin-I, Acanthamoeba myosin-IB (MIB), at ∼18 Å resolution. Interpretation of the projection map suggests that the MIB molecules sit upright on the membrane. We also used cryoelectron microscopy and helical image analysis to determine the three-dimensional structure of actin filaments decorated with unphosphorylated (inactive) MIB. The catalytic domain is similar to that of other myosins, whereas the large carboxy-terminal tail domain differs greatly from brush border myosin-I (BBM-I), another member of the myosin-I class. These differences may be relevant to the distinct cellular functions of these two types of myosin-I. The catalytic domain of MIB also attaches to F-actin at a significantly different angle, ∼10°, than BBM-I. Finally, there is evidence that the tails of adjacent MIB molecules interact in both the 2D crystal and in the decorated actin filaments.

You do not currently have access to this content.