Photosystem II (PS II) is a photosynthetic reaction center found in higher plants which has the unique ability to evolve oxygen from water. Several groups have formed two-dimensional PS II crystals or have isolated PS II complexes and studied them by electron microscopy and image analysis. The majority of these specimens have not been well characterized biochemically and have yielded relatively low resolution two-dimensional projection maps with a variety of unit cell sizes. We report the characterization of the polypeptide and lipid content of tubular crystals of PS II. The crystals contain the reaction center core polypeptides D1, D2, cytochrome b559, as well as the chlorophyll-binding polypeptides (CP) CP47, CP43, CP29, CP26, CP24, and CP22. The lipid composition was similar to the lipids found in the stacked portion of thylakoids. We also report a 2.0-nm resolution projection map determined by electron microscopy and image analysis of frozen, hydrated PS II crystals. This projection map includes information on the portion of the complex buried in the lipid bilayer. The unit cell is a dimer with unit vectors of 17.0 and 11.4 nm separated by an angle of 106.6 degrees. In addition, Fab fragments against D1 and cytochrome b559 were used to localize those two polypeptides, and thus the reaction center, within the PS II complex. The results indicate that D1 and cytochrome b559 are found within one of the heaviest densities of the monomeric unit.

This content is only available as a PDF.