Malignant transformation of fibroblast and epithelial cells is accompanied by increased beta 1-6 N-acetylglucosaminyltransferase V (GlcNAc-TV) activity, a Golgi N-linked oligosaccharide processing enzyme. Herein, we report that expression of GlcNAc-TV in Mv1Lu cells, an immortalized lung epithelial cell line results in loss of contact-inhibition of cell growth, an effect that was blocked by swainsonine, an inhibitor of Golgi processing enzyme alpha-mannosidase II. In serum-deprived and high density monolayer cultures, the GlcNAc-TV transfectants formed foci, maintained microfilaments characteristic of proliferating cells, and also experienced accelerated cell death by apoptosis. Injection of the GlcNAc-TV transfectants into nude mice produced a 50% incidence of benign tumors, and progressively growing tumors in 2:12 mice with a latency of 6 mo, while no growth was observed in mice injected with control cells. In short term adhesion assays, the GlcNAc-TV expressing cells were less adhesive on surfaces coated with fibronectin and collagen type IV, but no changes were observed in levels of cell surface alpha 5 beta 1 or alpha v beta 3 integrins. The larger apparent molecular weights of the LAMP-2 glycoprotein and integrin glycoproteins alpha 5, alpha v and beta 1 in the transfected cells indicates that their oligosaccharide chains are substrates for GlcNAc-TV. The results suggest that beta 1-6GlcNAc branching of N-linked oligosaccharides contributes directly to relaxed growth controls and reduce substratum adhesion in premalignant epithelial cells.