The goal of this study was to assess the relative importance of the axonal synthesis of phosphatidylcholine for neurite growth using rat sympathetic neurons maintained in compartmented culture dishes. In a double-labeling experiment [14C]choline was added to compartments that contained only distal axons and [3H]choline was added to compartments that contained cell bodies and proximal axons. The specific radioactivity of labeled choline was equalized in all compartments. The results show that approximately 50% of phosphatidylcholine in distal axons is locally synthesized by axons. The requirement of axonal phosphatidylcholine synthesis for neurite growth was investigated. The neurons were supplied with medium lacking choline, an essential substrate for phosphatidylcholine synthesis. In the cells grown in choline-deficient medium for 5 d, the incorporation of [3H]palmitate into phosphatidylcholine was reduced by 54% compared to that in cells cultured in choline-containing medium. When phosphatidylcholine synthesis was reduced in this manner in distal axons alone, growth of distal neurites was inhibited by approximately 50%. In contrast, when phosphatidylcholine synthesis was inhibited only in the compartment containing cell bodies with proximal axons, growth of distal neurites continued normally. These experiments imply that the synthesis of phosphatidylcholine in cell bodies is neither necessary nor sufficient for growth of distal neurites. Rather, the local synthesis of phosphatidylcholine in distal axons is required for normal growth.

This content is only available as a PDF.