To investigate the intracellular role of the clathrin heavy chain in living cells, we have used "antisense" RNA to engineer mutant Dictyostelium discoideum cells that are severely deficient in clathrin heavy chain expression. Immunoblots stained with an anti-clathrin heavy chain antiserum revealed that mutant cells contained undetectable amounts of clathrin heavy chain protein. Similarly, Northern blots showed an absence of clathrin heavy chain mRNA. Clathrin heavy chain-deficient Dictyostelium cells were viable, but exhibited growth rates twofold slower than parental cells. Whereas many morphological features of the mutant cells were normal, mutant cells lacked coated pits and coated vesicles. Clathrin-deficient cells were also missing large translucent vacuoles that serve as endosomes and contractile vacuoles. In the absence of clathrin heavy chain, mutant cells displayed three distinct functional defects: (a) impairment in endocytosis of fluid phase markers, but competence in another endocytic pathway, the phagocytosis of solid particles; (b) defects in osmoregulation; and (c) inability to complete the starvation-induced development cycle.

This content is only available as a PDF.