Laminin is the first extracellular matrix protein expressed in the developing mouse embryo. It is known to influence morphogenesis and affect cell migration and polarization. Several laminin receptors are included in the integrin family of extracellular matrix receptors. Ligand binding by integrin heterodimers results in signal transduction events controlling cell motility. We report that the major laminin receptor on murine embryonic stem (ES) cells is the integrin heterodimer alpha 6 beta 1, an important receptor for laminin in neurons, lymphocytes, macrophages, fibroblasts, platelets and other cell types. However, the cytoplasmic domain of the ES cell alpha 6 (alpha 6 B) differs totally from the reported cytoplasmic domain amino acid sequence of alpha 6 (alpha 6 A). Comparisons of alpha 6 cDNAs from ES cells and other cells suggest that the alpha 6 A and alpha 6 B cytoplasmic domains derive from alternative mRNA splicing. Anti-peptide antibodies to alpha 6 A are unreactive with ES cells, but react with mouse melanoma cells and embryonic fibroblasts. When ES cells are cultured under conditions that permit their differentiation, they become positive for alpha 6 A, concurrent with the morphologic appearance of differentiated cell types. Thus, expression of the alpha 6 B beta 1 laminin receptor may be favored in undifferentiated, totipotent cells, while the expression of alpha 6 A beta 1 receptor occurs in committed lineages. While the functions of integrin alpha chain cytoplasmic domains are not understood, it is possible that they contribute to transferring signals to the cell interior, e.g., by delivering cytoskeleton organizing signals in response to integrin engagement with extracellular matrix ligands. It is therefore reasonable to propose that the cellular responses to laminin may vary, according to what alpha subunit isoform (alpha 6 A or alpha 6 B) is expressed as part of the alpha 6 beta 1 laminin receptor. The switch from alpha 6 B to alpha 6 A, if confirmed in early embryos, could then be of striking potential relevance to the developmental role of laminin.

This content is only available as a PDF.