An expression vector was prepared containing a cDNA coding for a truncated version of the intermediate filament (IF) protein desmin. The encoded truncated desmin protein lacks a portion of the highly conserved alpha-helical rod region as well as the entire nonhelical carboxy-terminal domain. When transiently expressed in primary fibroblasts, or in differentiating postmitotic myoblasts and multinucleated myotubes, the truncated protein induces the complete dismantling of the preexisting vimentin or desmin/vimentin IF networks, respectively. Instead, in both cell types vimentin and desmin are packaged into hybrid spheroid bodies scattered throughout the cytoplasm. Despite the complete lack of intact IFs, myoblasts and myotubes expressing truncated desmin assemble and laterally align normal striated myofibrils and contract spontaneously in a manner indistinguishable from that of control myogenic cells. In older cultures the spheroid bodies shift from a longitudinal to a predominantly transverse orientation and loosely align along the I-Z-I-regions of striated myofibrils (Bennett, G.S., S. Fellini, Y. Toyama, and H. Holtzer. 1979. J. Cell Biol. 82:577-584), analogous to the translocation of intact desmin/vimentin IFs in control muscle. These results suggest the need for a critical reexamination of currently held concepts regarding the functions of desmin IFs during myogenesis.

This content is only available as a PDF.