Agrin, an extracellular matrix-associated protein extracted from synapse-rich tissues, induces the accumulation of acetylcholine receptors (AChRs) and other synaptic components into discrete patches on cultured myotubes. The appearance of agrin-like molecules at neuromuscular junctions suggests that it may direct synaptic organization in vivo. In the present study we examined the role of extracellular matrix components in agrin-induced differentiation. We used immunohistochemical techniques to visualize the spatial and temporal distribution of laminin, a heparan sulfate proteoglycan (HSPG), fibronectin, and type IV collagen on cultured chick myotubes during agrin-induced aggregation of AChRs. Myotubes displayed significant amounts of laminin and HSPG, lesser amounts of type IV collagen, and little, if any, fibronectin. Agrin treatment caused cell surface laminin and HSPG to patch, while collagen and fibronectin distributions were generally unaffected. Many of the agrin-induced laminin and HSPG patches colocalized with AChR patches, raising the possibility of a causal relationship between matrix patching and AChR accumulations. However, patching of AChRs (complete within a few hours) preceded that of laminin or HSPG (not complete until 15-20 h), making it unlikely that matrix accumulations initiate AChR patching at agrin-induced sites. Conversely, when AChR patching was blocked by treatment with anti-AChR antibody mAb 35, agrin was still able to effect patching of laminin and HSPG. Taken together, these findings suggest that agrin-induced accumulations of AChR and laminin/HSPG are not mechanistically linked.

This content is only available as a PDF.