The major excreted protein (MEP) of transformed mouse fibroblasts is the lysosomal protease, cathepsin L. MEP is also secreted by untransformed mouse cells in response to growth factors and tumor promoters, and is thought to play a role in cell growth and transformation. To determine the relationship between MEP synthesis and MEP secretion, we have examined these events in PDGF-treated NIH 3T3 cells. PDGF enhanced MEP synthesis and caused the diversion of MEP from the lysosomal delivery pathway to a secretory pathway. These two effects were found to be regulated independently at various times after growth factor addition. Short PDGF treatments (0.5 or 1 h) resulted in quantitative secretion of MEP although synthesis was near the control level. High levels of both synthesis and secretion occurred between 2 and 14 h of PDGF treatment. Between 18 and 30 h, the amount of secreted MEP returned to the low control level even though synthesis remained elevated. The secretion was specific for MEP; other lysosomal enzymes were not found in the media from PDGF-treated cells. PDGF-induced secretion of MEP was inhibited 84% by cycloheximide, suggesting that protein synthesis is required to elicit this effect. PDGF also caused a time-dependent increase in mannose 6-phosphate (Man-6-P) receptor-mediated endocytosis. These data support a model in which PDGF alters the distribution of Man-6-P receptors such that the Golgi concentration of receptors becomes limiting, thereby causing the selective secretion of the low affinity ligand, MEP.

This content is only available as a PDF.