Three monoclonal antibodies directed against chicken brush border myosin were used to study the possible function of myosin in microfilament organization and locomotion of chicken fibroblasts. These antibodies bind to distinct and separate epitopes on the heavy chain of chicken nonmuscle myosin and display differential effects of myosin filament formation and actin-myosin interaction (Citi, S., and J. Kendrick-Jones. 1988. J. Musc. Res. Cell Motil. 9: 306-319). When injected into chicken fibroblasts, all antibodies induced breakdown of stress fibers. Concomitantly, a large proportion of the cells developed extensive lamellae which altered their morphology drastically. These cells showed also increased locomotory activity. All effects were concentration dependent and reversible. The most drastic alterations were observed with cells injected with antibody quantities exceeding the quantity of cellular myosin (molar ratios of antibody to myosin greater than 3:1). The finding that antibodies with different effects on myosin filament formation in vitro all induce similar intracellular processes suggests that it is the antibody-induced decrease in functional myosin that triggers an increase in plasma membrane dynamics and locomotory activity, rather than differences in myosin filament length or conformation.

This content is only available as a PDF.