Torpedo electroplaque and vertebrate neuromuscular junctions contain high levels of a nonactin, 43,000-Mr peripheral membrane protein referred to as the 43K protein. 43K protein is associated with the cytoplasmic face of postsynaptic membranes at areas of high acetylcholine receptor density and has been implicated in the establishment and/or maintenance of these receptor clusters. Cloning of cDNAs encoding Torpedo 43K protein revealed that its amino terminus contains a consensus sequence sufficient for the covalent attachment of the rare fatty acid myristate. To examine whether 43K protein is, in fact, myristoylated, mouse muscle BC3H1 cells were metabolically labeled with either [35S]cysteine or [3H]myristate and immunoprecipitated with a monospecific antiserum raised against isolated Torpedo 43K protein. In cells incubated with either precursor, a single labeled species was specifically recovered that comigrated on SDS-PAGE with 43K protein purified from Torpedo electric organ. Approximately 95% of the 3H labeled material released from [3H]myristate-43K protein by acid methanolysis was extractable in organic solvents and eluted from a C18 reverse-phase HPLC column exclusively at the position of the methyl myristate internal standard. Thus, 43K protein contains authentic myristic acid rather than an amino or fatty acid metabolite of [3H]myristate. Myristate appears to be added to 43K protein cotranslationally and cannot be released from it by prolonged incubation in SDS, 2-mercaptoethanol, or hydroxylamine (pH 7.0 or 10.0), characteristics consistent with amino terminal myristoylation. Covalently linked myristate may be responsible for the high affinity of purified 43K protein for lipid bilayers despite the absence of a notably hydrophobic amino acid sequence.

This content is only available as a PDF.