We have characterized the polarity of the transferrin receptor in the epithelial Madin-Darby canine kidney (MDCK) cell line. The receptor is present in approximately 165,000 copies per cell, migrates as a diffuse band upon SDS gel electrophoresis with Mr 90,000, displays a dissociation constant for diferritransferrin at neutral pH of approximately 2 nM, and is active in essentially all of the cells of the population. Transferrin-mediated 55Fe uptake was used to measure the polarity of active transferrin receptors in filter-grown MDCK cells. The ratio of basolateral to apical receptors was approximately 800:1 for the high resistance strain I MDCK cells (typically greater than 2,000 ohm X cm2) and approximately 300:1 for the lower resistance strain II cells (less than 350 ohm X cm2). In combination with morphometric data this shows that a difference in resistance between these two strains is not reflected in a significant difference in cell surface polarity. We used the recycling of transferrin receptor in filter-grown MDCK cells to evaluate the accuracy of the sorting of a basolateral protein during endocytosis. Monitoring the amount of apically released 125I-labeled transferrin after application of 55Fe- and 125I-labeled transferrin to the basolateral surface provided a sensitive assay of the accuracy of sorting during recycling of the receptor from endosomes to the plasma membrane. The accuracy of transferrin receptor sorting (greater than 99.88%) during a single cycle of transit between the endosome and the plasma membrane is sufficient to maintain the high level of polarity of the cell.

This content is only available as a PDF.