The mechanism of actin incorporation into and association with stress fibers of 3T3 and WI38 fibroblasts was examined by fluorescent analog cytochemistry, fluorescence recovery after photobleaching (FRAP), image analysis, and immunoelectron microscopy. Microinjected, fluorescein-labeled actin (AF-actin) became associated with stress fibers as early as 5 min post-injection. There was no detectable cellular polarity in the association of AF-actin with pre-existing stress fibers relative to perinuclear or peripheral regions. The rate of incorporation was quantified by image analysis of images generated with a two-dimensional photon counting microchannel plate camera. After equilibration of up to 2 h post-injection, FRAP demonstrated that actin subunits exchanged rapidly between filaments in stress fibers and the surrounding cytoplasm. When co-injected with rhodamine-labeled bovine serum albumin as a control, only actin was detected in the phase-dense stress fibers. The control protein was excluded from fibers and any linear fluorescence of the control was demonstrated as a pathlength artifact. The incorporation of AF-actin into stress fibers was studied by immunoelectron microscopy using anti-fluorescein as the primary antibody and goat anti-rabbit IgG coupled to peroxidase as the secondary antibody. At 5 min post-injection, reaction product was localized periodically in some fibers with a periodicity of approximately 0.75 microns. In large diameter fibers at 5 min post-injection, the analog was seen first on the surface of fibers, with individual filaments resolvable within the core. In the same cell, thinner diameter fibers were labeled uniformly throughout the diameter. By 20 min post-injection, most fibers were uniformly labeled. We conclude that the rate of actin subunit exchange in vivo is extremely rapid with molecular incorporation into actin filaments of stress fibers occurring as early as a few minutes post-injection. Exchange appears to first occur in filaments along the surface of stress fibers and then into more central regions in a periodic manner. We suggest that the periodic localization of actin at very early time points is due to a local microheterogeneity in which microdomains of fast vs. slower incorporation result from the periodic localization of actin-binding protein, such as alpha-actinin, along the length of the fiber.

This content is only available as a PDF.