Zona-free oocytes of the mouse were inseminated at prometaphase I or metaphase I of meiotic maturation in vitro, and the behavior of the sperm nuclei within the oocyte cytoplasm was examined. If the oocytes were penetrated by up to three sperm, maturation continued during subsequent incubation and became arrested at metaphase II. Meanwhile, each sperm nucleus underwent the following changes. First, the chromatin became slightly dispersed. By 6 h after insemination, this dispersed chromatin had become coalesced into a small mass, from which short chromosomal arms later became projected. Between 12 and 18 h after insemination, each mass of chromatin became resolved into 20 discrete metaphase chromosomes. In contrast, if oocytes were penetrated by four to six sperm, oocyte meiosis was arrested at metaphase I, and each sperm nucleus was transformed into a small mass of chromatin rather than into metaphase chromosomes. If oocytes were penetrated by more than six sperm, the maternal chromosomes became either decondensed or pycnotic, and the sperm nuclei were transformed into larger masses of chromatin. As control experiments, immature and fully mature metaphase II oocytes were inseminated. In the immature oocytes, which were kept immature by exposure to dibutyryl cyclic AMP, no morphological changes in the sperm nucleus were observed. On the other hand, in the fully mature oocytes, which were activated by sperm penetration, the sperm nucleus was transformed into the male pronucleus. Therefore, the cytoplasm of the maturing oocyte develops an activity that can transform the highly condensed chromatin of the sperm into metaphase chromosomes. However, the capacity of an oocyte is limited, such that it can transform a maximum of three sperm nuclei into metaphase chromosomes. Furthermore, the presence of more than six sperm causes a loss of the ability of the oocyte to maintain the maternal chromosomes in a metaphase state.

This content is only available as a PDF.