We have examined the nature of the requirement for RNA synthesis during the differentiation of Naegleria gruberi amebae into flagellates (Fulton, C., and C. Walsh, 1980, J. Cell Biol., 85:346-360) by looking for poly(A)+RNAs that are specific to differentiating cells. A cDNA library prepared from poly(A)+RNA extracted from cells 40 min after initiation of the differentiation (40-min RNA), the time when formation of flagella becomes insensitive to inhibitors of RNA synthesis, was cloned into pBR322. Recombinant clones were screened for sequences that were complementary to 40-min RNA but not to RNA from amebae (0-min RNA). Ten of these differentiation-specific (DS) plasmids were identified. The DS plasmids were found to represent at least four different poly(A)+RNAs based on cross-hybridization, restriction mapping, and Northern blot analysis. Dot blot analysis was used to quantify changes in DS RNA concentration. The four DS RNAs appeared coordinately during the differentiation. They were first detectable at 10-15 min after initiation, reached a peak at 70 min as flagella formed, and then declined to low levels by 120 min when flagella reached full length. The concentration of the DS RNAs was found to be at least 20-fold higher in cells at 70 min than in amebae. The changes in DS RNA concentration closely parallel changes in tubulin mRNA as measured by in vitro translation (Lai, E.Y., C. Walsh, D. Wardell, and C. Fulton, 1979, Cell, 17:867-878).

This content is only available as a PDF.