The developmental appearance of cell-adhesion molecules (CAMs) was mapped during the morphogenesis of the adult chicken feather. Neural CAM (N-CAM), liver CAM (L-CAM), and neuron-glia CAM (Ng-CAM), as well as substrate molecules (laminin and fibronectin), were compared in newborn chicken skin by immunohistochemical means. N-CAM was found to be enriched in the dermal papilla, which was closely apposed to L-CAM-positive papillar ectoderm. The two CAMs were then co-expressed in cells of the collar epithelium. Subsequently generated barb epithelia expressed only L-CAM, but N-CAM reappeared periodically on cells between developing barbs and barbules. N-CAM first appeared on a single L-CAM-positive basilar cell located in each valley flanked by two adjacent barb ridges. Subsequently, the expression of N-CAM extended one cell after another to include the whole basilar layer. N-CAM also appeared in the L-CAM-positive axial-plate epithelia, beginning in a single cell located at the ridge base. The two collectives of N-CAM-positive epithelia constituting the marginal and axial plates then disintegrated, leaving interdigitating spaces between keratinized structures that had previously expressed L-CAM. The morphological transformation from an epithelial cylinder to a three-level branched feather pattern is thus achieved by coupling alternating CAM expression in linked cell collectives with specific differentiation events, such as keratinization. During all of these morphogenetic processes, laminin and fibronectin formed a continuous basement membrane separating pulp from feather epithelia, and were excluded from the sites involved in periodic appearances of N-CAM. The same staining pattern described for developing chickens persisted in the feather follicles of adult chicken tissue that have gone through several cycles of molting. Cyclic expression of the two different CAMs underlies each of the different morphological events that are generated epigenetically during feather morphogenesis.

This content is only available as a PDF.