Microtubule assembly in vivo was studied by hapten-mediated immunocytochemistry. Tubulin was derivatized with dichlorotriazinylaminofluorescein (DTAF) and microinjected into living, interphase mammalian cells. Sites of incorporation were determined at the level of individual microtubules by double-label immunofluorescence. The haptenized tubulin was localized by an anti-fluorescein antibody and a second antibody conjugated with fluorescein. Total microtubules were identified by anti-tubulin and a secondary antibody conjugated with rhodamine. Contrary to recent studies (Salmon, E. D., et al., 1984, J. Cell Biol., 99:2165-2174; Saxton, W. M., et al., 1984, J. Cell Biol., 99:2175-2186) which suggest that tubulin incorporates all along the length of microtubules in vivo, we found that microtubule assembly in interphase cells was in vivo, as in vitro, an end-mediated process. Microtubules that radiated out toward the cell periphery incorporated the DTAF-tubulin solely at their distal, that is, their plus ends. We also found that a proportion of the microtubules connected to the centrosomes incorporated the DTAF-tubulin along their entire length, which suggests that the centrosome can nucleate the formation of new microtubules.

This content is only available as a PDF.