Resealed erythrocyte ghosts were prepared under different experimental conditions and were tested in vitro for susceptibility to infection with the human malarial parasite, Plasmodium falciparum. Resealed ghosts, prepared by dialyzing erythrocytes in narrow membrane tubing against low ionic strength buffer that was supplemented with magnesium ATP, were as susceptible to parasite infection as were normal erythrocytes. There was a direct correlation between intraerythrocytic ATP content and susceptibility to parasite infection. Neither MgCl2 nor sodium ATP could be substituted for magnesium ATP in maintaining high intraerythrocytic ATP concentration. When resealed ghosts were loaded with antispectrin IgG, malaria merozoite invasion was inhibited. At an average intracellular antispectrin IgG concentration of 3.5 micrograms/10(8) cells, there was a 35% inhibition of parasite invasion. This inhibition was due to spectrin crosslinking within the resealed ghosts, since the monovalent, Fab' fragments of antispectrin IgG had no inhibitory effect on invasion. These results indicate that the cytoskeleton plays a role in the complex process of merozoite entry into the host erythrocyte.
Skip Nav Destination
Article navigation
1 December 1982
Article|
December 01 1982
Involvement of spectrin and ATP in infection of resealed erythrocyte ghosts by the human malarial parasite, Plasmodium falciparum.
J A Olson
,
A Kilejian
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1982) 95 (3): 757–762.
Citation
J A Olson, A Kilejian; Involvement of spectrin and ATP in infection of resealed erythrocyte ghosts by the human malarial parasite, Plasmodium falciparum.. J Cell Biol 1 December 1982; 95 (3): 757–762. doi: https://doi.org/10.1083/jcb.95.3.757
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement