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Introduction
Elimination of cells by programmed cell death (PCD) is a uni-

versal feature of development and aging (Jacobson et al., 1997; 

Vaux and Korsmeyer, 1999). In both vertebrates and inverte-

brates, dying cells often progress through a stereotyped set of 

transformations referred to as apoptosis. In this form of PCD the 

nucleus condenses, and the collapsing cell corpse fragments into 

“apoptotic bodies” that are engulfed by specialized phagocytes or 

neighboring cells (Kerr et al., 1972; Wyllie et al., 1980; Kerr and 

Harmon, 1991). Apoptosis requires autonomous genetic func-

tions within the dying cell, and extrinsic cues that elicit apoptosis 

have been investigated in numerous experimental models (Danial 

and Korsmeyer, 2004; Salvesen and Abrams, 2004). Other forms 

of death are also thought to contribute during development and 

differ from apoptosis with respect to cellular morphology, mech-

anism, or mode of activation. These may include necrosis, char-

acterized by swelling of the plasma membrane, or autophagic cell 

death, which is linked to extensive vacuolization in the cytoplasm 

(Kroemer et al., 2005). These forms of cell death can be caspase 

dependent or independent and may or may not be under deliber-

ate genetic control (Kroemer et al., 2005).

Two conserved protein families comprise central ele-

ments of the apoptotic machinery (Salvesen and Abrams, 2004). 

Orthologous proteins represented by Ced4 in the nematode, Apaf1 

in mammals, and Drosophila Ark (Dark) function as activating 

adaptors for CARD-containing apical caspases. During apoptosis, 

Ced4/Apaf1/Dark adaptors associate with pro-caspase partners 

(Ced3, Caspase 9, and Dronc) in a multimeric complex referred to 

as the “apoptosome”. This complex is regulated by Bcl2 proteins, 

but apparently through different mechanisms (for review see 

Kornbluth and White, 2005).

Previously, we and others genetically examined compo-

nents of the Drosophila apoptosome (Rodriguez et al., 1999, 

2002; Chew et al., 2004; Daish et al., 2004; Xu et al., 2005; 

Akdemir et al., 2006; Mills et al., 2006; Srivastava et al., 2006). 

dark and dronc are recessive, lethal genes. Both exert global 

functions during PCD and in stress-induced apoptosis. How-

ever, their roles in apoptosis are not absolute because rare cell 

deaths occurred in embryos lacking maternal and zygotic prod-

uct of either gene (Xu et al., 2005; Akdemir et al., 2006). Elim-

ination of dronc in the wing caused a unique, age-dependent 

phenotype associated with late-onset blemishing throughout 

the wing blade (Chew et al., 2004). Here, we show that this 

progressive phenotype is characteristic for wing epithelia that 

lack apoptogenic functions and is caused by defects in a com-

munal form of PCD where epithelial cells are collectively and 

rapidly eliminated. We leveraged these fi ndings to discover ad-

ditional genes required for PCD and recovered a limited set of 

loci, many of which were previously unknown to function in 

cell death. Here, we establish that homeodomain interacting 
protein kinase (HIPK) is essential for coordinated death in the 

wing epithelium and, consistent with PCD functions in earlier 
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developmental stages, regulates proper cell number in diverse 

tissue types.

Results and discussion
Proper maintenance of the adult wing 
requires PCD gene activity
Wings mosaic for dronc− tissue exhibit normal morphology at 

eclosion but develop progressive, melanized blemishes with 

age (Chew et al., 2004). We applied similar methods to de-

termine whether lesions in other apoptogenic genes present 

a similar phenotype. After eclosion, wings mosaic for Df(H99), 
a deletion removing the apoptotic activators reaper (rpr), 

grim, and hid (Abrams, 1999), were morphologically normal 

at eclosion, but over 3–7 d, melanized blemishes appeared at 

random throughout the wing (Fig. 1 C). Likewise, homozy-

gous drice∆1 adult “escapers” defi cient for the effector cas-

pase Drice (Muro et al., 2006) also presented normal wings at 

eclosion but developed blemishes with age (Fig. 1 D). Wings 

mosaic for dark82, a null allele of dark (Akdemir et al., 2006), 

were indistinguishable from wild-type (WT) at eclosion (Fig. 1 A), 

but within 4 d developed wing blemishes (Fig. 1 B). These 

late-onset blemishes became markedly more severe as ani-

mals aged. Similar yet less severe wing blemishes occurred 

in adults homozygous for darkCD4, a hypomorphic allele of 

dark (Chew et al., 2004). Together, these observations estab-

lish that late-onset progressive blemishing in mosaic wings is 

a characteristic phenotype shared among mutants in canonical 

PCD pathways.

The wing blemish phenotype results 
from a failure in epithelial PCD
In the wing of newly eclosed adults, PCD removes the epithe-

lium that forms the dorsal and ventral cuticles (Johnson and 

Milner, 1987; Kimura et al., 2004). To determine whether the 

cause of the blemish phenotype might trace to defective death 

in the wing epithelium, we examined this tissue in dark mutants. 

For these studies, wings of darkCD4 adults were prepared for 

light and electron microscopy. Histological analyses at the 

light level showed that on the fi rst day of eclosion, the dorsal 

and ventral cuticles of WT animals became tightly merged 

with no intervening tissue evident between these layers (Fig. 1 E). 

However, even 14 d after eclosion, cells and cell remnants 

remained situated between the dorsal and ventral cuticles in 

dark mutants. This “undead” tissue was most easily visual-

ized in lateral sections through melanized blemishes (Fig. 1, 

F–H). Further examination of the persisting epithelium at the 

EM level showed evidence of intact cells soon after eclosion 

(Fig. 1 P) and ectopic cellular material 24 h after eclosion 

(Fig. 1, I–K).

Figure 1. Cell death–defective adult phenotypes in mosaic wings. (A) Mosaic wings of animals bearing dark82 clones have normal morphology 1 d (d) 
 after eclosion. (B) The same adult as in panel A developed melanized blemishes (dotted circles) 11 d after eclosion. (C) Wings mosaic for H99 and (D) drice∆1 
7 d after eclosion. E–H are toluidine blue–stained plastic sections through the wings of WT (E) and dark mutants (F–H). Arrows (F–H) indicate ectopic tissue 
and cell remnants between the cuticle layers in dark mutants. Boxed regions in E, G, and H indicate wing veins. I–K and P are electron micrographs of 
 persisting tissue in darkcd4 wings, showing ultrastructure of intact cellular material, 1 d (I–K) and 20 min (P) post-eclosion. J is boxed region in I. Asterisk in 
P indicates the nucleus. (L) WT wing epithelium is visualized with vg:DsRed within 1 h of eclosion. By 2–3 h post-eclosion, these cells completely disappeared 
(panel M and Supplemental Videos, available at http://www.jcb.org/cgi/content/full/jcb.200702125/DC1). Wings that are mosaic for dronc− (N), 
H99 (O), or dark (Q) retain persisting wing epithelial cells, shown here 4 d, 24 h, and at least 6 h after eclosion.
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Live imaging reveals collective elimination 
of the wing epithelium
To directly examine the death of wing epithelial cells in vivo, we 

adapted a transgenic nuclear DsRed reporter driven by vestigial-
Gal4 (vg:DsRed) (Vegh and Basler, 2003; Barolo et al., 2004), 

which permits visualization of the fate of these cells soon after 

eclosion. Observations with this pan-epithelial marker in the 

wing confi rmed earlier studies (Kimura et al., 2004; Xu et al., 

2005). Fig. 1 L shows that within 1 h of eclosion, intact epithe-

lial cells are clearly present and regularly patterned through-

out the wing. 1–2 h later (2–3 h after eclosion), the entire 

intervein epithelium disappears, manifested here by the ab-

rupt loss of DsRed throughout the wing blade (Fig. 1 M). 

Live, real-time imaging of the wing in newly eclosed adults 

re vealed unexpected features associated with elimination of 

the intervein epithelium (Fig. 2 and Videos 1–3, available at 

http://www.jcb.org/cgi/content/full/jcb.200702125/DC1). Epithelial 

cells, labeled by nuclear fl uorescence, were arranged in a reg-

ular, predictable pattern throughout the wing. Then, consistent 

with nuclear breakdown, fl uorescence became redistributed 

throughout the cell followed by indications of blebbing and 

the appearance of fragmenting cells. Occasionally, weak fl uo-

rescence enclosed in cell corpses condensed to bright punctate 

bodies. This series of apoptogenic changes spread extremely 

rapidly throughout the epithelium, appearing here as a col-

lective wave initiating from the peripheral edge and moving 

across the wing blade (Fig. 2, top panels). Within just 4 min, 

virtually all nuclei (�450 cells) within a space of �114 mm2 

converted from viable to apoptotic morphology. The process 

involved tight coordination at the group level because the 

likelihood of a single cell apoptosing was clearly linked to 

similar behaviors by nearest neighboring cells over short 

time frames (Video 1). Also, the direction and size of the cell 

death wave may not be fi xed in every region of the wing, but 

centrally located cell groups were generally eliminated ear-

lier (Fig. 1 L).

Unlike conventional examples of PCD in development, we 

found no indication that overt engulfment of apoptotic corpses 

occurred at the site of death. Instead, DsRed-labeled cell rem-

nants were passively swept en masse toward the nearest wing 

vein (Fig. 2, bottom panels) where, apparently under hydro-

static pressure, cell debris streamed proximally toward the body 

through the wing or along the wing vein (Fig. 2, bottom panels; 

and Video 3). Together, these observations describe a communal 

form of PCD that rapidly eliminates the wing epithelium through 

coordinated group behavior.

Cells mutated for genes in the cell death 
pathway persist in the wing epithelium
We used the vg:DsRed reporter to track the fate of mosaic wing 

epithelia where mutant clones were induced. In sharp contrast 

to WT wings, abnormally persisting cells could be readily de-

tected as patches of DsRed in the nuclei of epithelial cells in 

mosaic tissues. For example, wings mosaic for dronc− clones 

retained extensive patches of persisting DsRed-labeled cells 

(Fig. 1 N). Here, cells and nuclei were readily detected 4 d af-

ter eclosion (Fig. 1 N), and even at 11 d post-eclosion, exten-

sive evidence of cell debris was seen (not depicted). We found 

that wings mosaic for the H99 deletion gave identical results 

(Fig. 1 O). Likewise, adults mutated for dark exhibited persist-

ing cells throughout the wing blade (Fig. 1 Q). Consistent with 

this, rare drice∆1 escapers also showed evidence of persisting 

cells after eclosion (Muro et al., 2006). These observations link 

failures in PCD to progressive melanized wing blemishes, raising 

Figure 2. Collective cell death eliminates the wing epithelium. Time-lapse micrographs of vg:DsRed marked wings of newly eclosed adults (see Materials 
and methods). In the top panel, at 0 min, cells are intact. At 11 min, several cells lose nuclear localized fl uorescent signal as fl uorescence distributes 
throughout the cell consistent with nuclear breakdown and blebbing (arrowheads). 1 min later (12 min), apoptosis has occurred further away from the wing 
margin, and by 15 min, all cells have undergone PCD. The dotted line in 0, 11, and 12 min marks the progression of an “apoptotic wave” through the 
epithelium, and the box and arrows represent the same cells in each panel. At 11 min, both cells in the box are intact. However, at 12 min the right cell 
has clearly undergone PCD while the left cell remains intact. Finally, at 15 min both cells have lost their nuclear signal and have undergone PCD. The bottom 
panels depict intact cells at 0 min (box), but by 15 min cells have apoptosed and have begun movement toward the wing vein at 24 min. All cells are 
 eliminated by 28 min. In these frames, the solid box follows the group of cells as they move while the dotted box marks the original location of the cells. 
Complete videos are available as supplemental material (http://www.jcb.org/cgi/content/full/jcb.200702125/DC1). Bottom frames are excerpts from 
Video 3, which were captured within 2 h after eclosion.
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the possibility that other apoptogenic mutants might also pro-

duce this phenotype.

A phenocopy screen recovers new cell 
death–defective mutations
Unlike previously described wing defects, which are congenital 

and evident at eclosion (Lawrence, 1992; Lindsley and Zimm, 

1992), the age-dependent phenotype described in Fig. 1 (A–D) is 

characteristic of mutations in genes that function in canonical 

PCD pathways. Moreover, when the dosage of dronc was reduced 

by half in darkCD4 adults (Chew et al., 2004) or if WT Dmp53 was 

removed from these same animals, melanized blemishes became 

far more severe. These genetic interactions are highly specifi c 

 because wing defects were never observed in Dmp53− homo-

zygotes or in dronc51 heterozygotes (unpublished data). Numerous 

other mutants showed no such effects in combination with a dark 

hypomorph. We reasoned that, if genetically eliminated, addi-

tional regulators and effectors in PCD pathways should pheno-

copy wings mosaic for dark− or dronc− tissue. We screened a 

collection of preexisting transposon mutants to capture insertions 

that exhibit normal wings at eclosion but develop melanized 

blemishes with age. Our strategy exploits the FLP/FRT system 

together with wing-specifi c drivers to interrogate animals bearing 

wing genotypes mosaic for clones of P element–derived lethal 

mutations. Progeny with mosaic wings were examined for late-

onset wing blemishes at 1, 7, and 14 d post-eclosion. We screened 

over 1,000 lethal insertions, representing 356 2nd chromosome 

mutations and 707 3rd chromosome mutations.

The majority of insertions (87%) produced no visible de-

fects as wing mosaics (see online supplemental tables, available 

at http://www.jcb.org/cgi/content/full/jcb.200702125/DC1). 13% 

of insertions tested produced abnormalities, and these were scored 

for the phenotypic categories shown in Fig. S1. Congenital de-

fects including notched, blistered, or wrinkled wings occurred 

alone or occasionally as compound phenotypes (Fig. S1, A–D). 

The candidate strains that developed wing blemishing were 

 further subdivided based on phenotypic severity. Insertions in class 

A developed pronounced blemishes within a week of eclosion 

(Fig. S1 E), whereas those in class B developed relatively light-

colored patches between 1 and 2 wk after eclosion (Fig. S1 F). 

Mutant lines exhibiting class A phenotypes were rare (�2%). All 

members of this class lacked blemishes at eclosion and dis-

played progressive blemishing occasionally associated with fragile 

and sometimes broken wings (Fig. S1 E). A new allele of dark 

(l(2)SH0173) was recovered in this class (Table S2), providing 

reassuring validation for our screening strategy. Some members 

among these classes exhibited congenital notches or blisters, but 

congenital blemishes present at eclosion were not found.

We applied inverse PCR to map or confi rm insertion 

sites of many class A and B strains (Table S2). In addition to 

Figure 3. HIPK is essential for normal PCD in the wing epithelium. The HIPK locus is depicted (A) with the original insertion, l(3)S134313. Other transpo-
sons, f03158 and d10792, were used to generate a deletion HIPK D1 (C), which removes 92% of the HIPK coding region by replacing residues 1–1243 
of the HIPK coding sequences with white+ marker gene. Primer sets A-B and C-D (C) were used to identify recombination events by genomic PCR. Deletions 
were verifi ed in panel B using two additional primer sets, which resulted in a novel PCR product (primers A–D) and a negative PCR result (primers E-F) in ho-
mozygous mutant DNA. rp49 represents a positive control. Wings mosaic for both HIPK l(3)S134313 (D and F) and HIPK D1 (E and G) were normal at eclosion, 
but upon aging showed severe blemishing and persisting cell phenotypes (D–G), with HIPK D1 wings exhibiting additional persisting DsRed cells (G). Note 
that the progressive blemishing phenotypes were not seen in parental strains, including those used to produce FRT recombinants.
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darkl(3)SH0173, we isolated several mutations associated with 

genes previously implicated in PCD (Table S1). For example, 

l(2)SH2275 contains an insertion 2 kb upstream of mir-14, 

a microRNA capable of modulating Rpr-induced cell death (Xu 

et al., 2003). Likewise, l(3)S048915 maps to the fi rst intron of 

DIAP1 and may represent a hypermorphic allele at this locus. 

l(3)S055409 maps near misshapen (Su et al., 1998), a gene im-

plicated in cell killing triggered by Rpr or Eiger, the fl y counter-

part of TNF (Igaki et al., 2002; Kuranaga et al., 2002). Several 

insertions map in or near transcriptional or translational regula-

tors that might alter the expression of cell death genes. For ex-

ample, grunge (l(3)S146907), an Atrophin-like protein (Erkner 

et al., 2002), functions as a transcriptional repressor (Zhang 

et al., 2002), while belle (l(3)S097074) belongs to the DEAD-

box family of proteins (Johnstone et al., 2005) often implicated 

in translational regulation and RNA processing.

A portion of the class A and B hits were also directly ex-

amined for defective PCD by applying the vg:DsRed reporter in 

mosaic wings. Of the 29 strains tested, 14 showed obvious evi-

dence for persisting cells in the wing epithelium (Table S2), 

which include darkl(3)SH0173 (Fig. 1 Q).

HIPK is essential for normal PCD 
of the wing epithelium
Mutants identifi ed above that exhibit both blemishing and per-

sisting cells are likely candidates for PCD genes. One strain, 

l(3)S134313, produced severe late-onset blemishing (Fig. 3 D) 

and a persisting cell phenotype (Fig. 3 F). After mapping this 

insertion to the fi rst intron of the HIPK, we produced null al-

leles at this locus by a customized deletion strategy illustrated in 

Fig. 3. Two FRT-containing P element insertions fl anking the 

coding region of HIPK (Fig. 3 A) were used to generate a novel 

deletion depicted in Fig. 3 C (see Materials and methods). PCR 

verifi ed recombination between P elements (Fig. 3 B), and 

8 deletion strains were recovered. These validated alleles elimi-

nate exons 4–12, removing over 92% of coding sequence in the 

predicted HIPK open reading frame. Deletions at the HIPK lo-

cus were uniformly lethal before the 3rd instar stage. However, 

zygotic HIPK is not essential to complete embryogenesis be-

cause �70% of HIPK homozygotes hatch to 1st instar larvae. 

HIPKD1 was recombined on the FRT79 chromosome to gener-

ate adult wings mosaic for this allele, and like the original inser-

tion, these animals also developed robust progressive blemishes 

(Fig. 3 E) and a persisting cell phenotype (Fig. 3 G). Both pheno-

types were more severe than the original P insertion, suggesting 

that the l(3)S134313 allele is hypomorphic for HIPK. These 

fi ndings link loss of HIPK function to our query phenotypes, 

establishing that the action of HIPK is essential for post-eclosion 

PCD in the wing epithelium.

HIPK affects neuronal cell numbers 
in the developing animal
Using general stains (acridine orange) or TUNEL methods, 

embryonic PCD was not overtly disturbed in HIPK mutants. 

Figure 4. Without HIPK, excessive neurons and cells are retained. α-Kr Ab staining of Bolwig’s organ precursors in WT (w1118) (A) and HIPK (B) mutants. 
The number of cells per organ is plotted in C. Note that zygotic HIPK− animals possess cell numbers equivalent to WT, but maternal HIPK− embryos have 
supernumerary cells comparable to levels seen in H99 mutants. α-dHb9 Ab staining in w1118 embryonic CNS fi lets shows the normal pattern of dHb9-positive 
cells in the ventral nerve cord at stage 16–17 (D). HIPK mutants at this same embryonic stage (E–G) show extra dHb9-positive cells and altered CNS 
patterning. Arrows and boxes indicate extra cells. The WT pattern of pupal eyes stained with α-Dlg is displayed in H with arrows illustrating interommatidial 
cells. HIPK mutant pupal eyes (I) exhibit more interommatidial cells (dotted lines), indicative of a defect in cell death. Distorted patterning of ommatidia and 
abnormal numbers of primary pigment cells were also seen in a subset of animals (not depicted).
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To investigate the possibility of more subtle or specifi c phenotypes, 

we examined the nervous system using antibodies that label 

specifi c populations of neurons affected by the H99 deletion 

(White et al., 1994). Using α-Kruppel antibody (Kosman et al., 

1998), we confi rmed that stage 14–15 WT embryos contained 

9–12 Kruppel-positive cells in the Bolwig’s Organ (Fig. 4, 

A and C). However, a portion of animals lacking maternal HIPK 

contained as many as 15 cells per organ (Fig. 4, B and C) at a 

penetrance comparable to H99 animals, which are completely 

cell death defective (Fig. 4 C). We also examined neurons ex-

pressing dHb9, a homeodomain protein marking a subset of 

cells that persist in cell death–defective H99 embryos (Rogulja-

Ortmann et al., 2007). In germline clones, distinct classes of 

dHb9 staining patterns emerged. A subset of animals exhibited 

extreme patterning defects. Other animals displayed a striking 

increase in dHb9-positive cell numbers (Fig. 4, E–G) when 

compared with WT embryos of the parental strain (Fig. 4 D). 

These data establish that HIPK fundamentally regulates cell 

numbers in the nervous system, and because the same subpopu-

lation of cells are affected by the H99 mutation, they implicate 

HIPK as a more general regulator of PCD.

The pupal eye undergoes reorganization involving cell 

death of interommatidial cells after pupation (Wolff and Ready, 

1991). To determine if HIPK regulates cell death in the retina, 

we generated whole eye clones and used the α-Dlg (discs large) 

antibody to outline cell borders in dissected pupal eyes after 

 pupation. The WT pattern of interommatidial cells is represented 

in Fig. 4 H. In contrast, extra interommatidial cells were fre-

quently retained in whole eye HIPK− clones (Fig. 4 I). This 

phenotype is overtly similar to animals lacking the apical cas-

pase Dronc (Xu et al., 2005) and consistent with an essential 

role in retinal PCD.

Closing remarks
Elimination of the wing epithelium in newly eclosed adults is 

predictable, easily visualized, and experimentally tractable. The 

major histomorphologic events involve cell death, delamination, 

and clearance of corpses and cell remnants. Recent studies es-

tablished that post-eclosion PCD is under hormonal control 

and involves the cAMP/PKA pathway (Kimura et al., 2004). 

While dying cells in the adult wing present apoptotic features 

(e.g., sensitivity to p35 and TUNEL positive), elimination of the 

epithelium is distinct from classical apoptosis in several impor-

tant respects. First, unlike most in vivo models, overt engulf-

ment of cell corpses does not occur at the site of death (Johnson 

and Milner, 1987; Ashkenas et al., 1996). Instead, dead or dying 

cells and their remnants are washed into the thoracic cavity via 

streaming of material along and through wing veins (Fig. 2, 

Videos 1–3; and Kimura et al., 2004). Second, extensive vacu-

olization is seen in ultrastructural analyses, which could indi-

cate elevated autophagic activity (for review see Johnson and 

Milner, 1987; Kimura et al., 2004; and Fig. 1, I–K). Third, 

widespread and near synchronous death that occurs in this context 

defi nes an abrupt group behavior. The process affects dramatic 

change at the tissue level, causing wholesale loss of intervein 

cells and coordinated elimination of the entire layer of epithelium. 

Rather than die independently, these cells die communally, as if 

responding to coordinated signals propagated throughout the 

entire epithelium, perhaps involving intercellular gap junctions. 

This group behavior contrasts with canonical in vivo models 

where a single cell, surrounded by viable neighbors, sporadically 

initiates apoptosis.

One study proposed that an epithelial-to-mesenchymal 

transition (EMT) accounts for the removal of epithelial cells 

 after eclosion (Kiger et al., 2007). Although our results do not 

exclude EMT associated changes in the newly eclosed wing 

 epithelium, compelling lines of evidence, presented here and 

elsewhere, establish that post-eclosion loss of the wing epithe-

lium occurs by PCD in situ—before cells are removed from the 

wing (Kimura et al., 2004). First, before elimination, wing epi-

thelial cells label prominently with TUNEL. Second, every mu-

tation in canonical PCD genes so far tested failed to effectively 

eliminate the wing epithelium (Fig. 1), and at least two of these 

were recovered in our screen. Third, elimination of the wing ep-

ithelium was reversed by induction of p35, a broad-spectrum 

caspase inhibitor (Kimura et al., 2004). Fourth, using time-lapse 

microscopy, we clearly detected condensing or pycnotic nuclei, 

followed by the rapid removal of all cell debris in time frames 

(minutes) not consistent with active migration. Instead, removal 

of cell remnants occurred by a passive streaming process, in-

volving perhaps hydrostatic fl ow of the hemolymph.

Here, we sampled over one fi fth of all lethal genes and 

nearly 10% of all genes in the fl y genome for the progressive 

blemish phenotype, a reliable indicator of PCD failure in the 

wing epithelium. Nearly half of the mutants that produced mel-

anized wing blemishing also displayed a cell death–defective 

phenotype when examined with the vg:DsRed reporter. The pre-

cise link between these defects is unclear, but a likely explana-

tion suggests that as the surrounding cuticle fuses, persisting 

cells, now deprived for nutrients and oxygen, become necrotic 

and may initiate melanization. Mutants could arrest at upstream 

steps, involving the specifi cation or execution of PCD, or they 

might affect proper clearance of cell corpses from the epithelium. 

We recovered new alleles of dark (l(2)SH0173) and a likely 

hypermorph of thread (l(3)S048915), which provides  reassuring 

validation of this prediction.

By leveraging this distinct phenotype, we captured novel 

cell death genes, including the Drosophila orthologue of HIPK. 

Though fi rst identifi ed as an NK homeodomain binding partner 

(Kim et al., 1998), we found this gene to be an essential regula-

tor of PCD and cell numbers in diverse tissue contexts. Of the 

four mammalian HIPK genes, HIPK2, the predicted orthologue 

of Drosophila HIPK, has been placed in the p53 stress-response 

apoptotic pathway (D’Orazi et al., 2002; Hofmann et al., 2002; 

Di Stefano et al., 2004, 2005), but whether the Drosophila 

counterpart similarly impacts this network is not yet known.

Materials and methods
Generation of mutant wing clones
The l(3)Sxxxxxx(Bellotto et al., 2002) and l(2)SHxxxx(Oh et al., 2003) FRT 
stocks were obtained from Szeged Stock Center. vg-Gal4, UAS-FLP; FRT79, 
FRT82 and vg-Gal4, UAS-FLP, FRT40, FRT42 were provided by K. Basler 
(University of Zürich, Zürich, Switzerland). MS1096-Gal4, UAS-FLP fl ies are 
from J. Jiang (UT Southwestern Medical Center, Dallas, TX). FRT-Df(H99) 
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stocks were provided by A. Gould (National Institute for Medical Research, 
London, UK) and J. O’Tousa (University of Notre Dame, Notre Dame, IN). 
To generate wing clones, 4 males of the genotype l(3)Sxxxxxx-FRT82/
TM3(6) were crossed to 3 females of vg-Gal4, UAS-FLP; FRT79, FRT82. 
F1 fl ies were examined at eclosion and at 1 and 2 wk of age for appear-
ance of “melanized blemishes” on the wing. l(3)Sxxxxxx-FRT80/TM3(6) 
and l(2)SHxxxx-FRT40/Cyo fl ies were similarly screened by crossing to 
vg-Gal4:UAS-FLP; FRT80 and vg-Gal4:UAS-FLP, FRT40, FRT42 fl ies, respec-
tively. MS1096-Gal4:UAS-FLP; FRT42B was used for mutations on 2R. Adult 
wings were removed at different ages and fi xed in paraformaldehyde for 
standard histology. Electron micrographs were generated using an electron 
microscope (TEMP2 1200 EX II; JEOL).

Detection of persisting wing epithelium
The FLP/FRT system was used to generate mutant wing clones, and persisting 
cells were visualized using DsRed. UAS-RedStinger/Cyo; dronc51-FRT79/
TM6 was crossed to vg-Gal4:UAS-FLP; FRT79, FRT82. After eclosion, adults 
were aged from 1 to 14 d. Wings were removed, mounted on glass slides, 
and visualized using a fl uorescent DLM (Axioplan; Carl Zeiss MicroImaging, 
Inc.) and a monochrome digital camera (Hamamatsu). Df(H99)-FRT80, 
dark82-FRT42D, or HIPKD1-FRT79 lines with or without UAS-RedStinger were 
also crossed to their respective FLP/FRT lines and imaged as stated above. 
Epithelial cell death was recorded in time-lapse experiments using the pre-
vious crosses to image w1118; UAS-RedStinger/vg-Gal4, UAS-FLP; TM3(6)/
FRT79 adults at 1–2 h after eclosion using a stereomicroscope (SteREO 
Discovery V.12; Carl Zeiss MicroImaging, Inc.) with Pentafl uar S. Adults 
were glued on their dorsal surface to glass slides and imaged while alive. 
UAS-RedStinger lines were from Bloomington Stock Center.

Inverse PCR
P-element insertion sites were mapped by inverse PCR according to proto-
cols from BDGP (http://www.fruitfl y.org/about/methods/inverse.pcr.html). 
Genomic DNA of insertion lines containing the PlacW insertion element 
was extracted using Wizard Genomic DNA Extraction kit (Promega) and 
digested with HhaI, HpaII, and MboI restriction enzymes for 2.5 h at 37°C. 
Resulting digestions were diluted into 400 μl T4 DNA ligase (Roche) re-
actions and incubated overnight at 4°C. DNA was ethanol precipitated and 
used in Expand Long Template (Roche) PCR reactions with primers specifi c to 
the PlacW insertion. Unique PCR products were gel purifi ed and sequenced, 
and insertion locations were confi rmed using genomic PCR with primer sets 
specifi c to PlacW and surrounding genomic sequences.

HIPK deletion strains
Deletions were generated using the Exelixis collection of P elements as 
described previously (Parks et al., 2004; Thibault et al., 2004). To delete 
the HIPK locus, insertions f03158 and d10792 were placed in trans to-
gether with hs-FLP and heat-shocked to generate a FRT-mediated deletion. 
PCR primers directed to the remaining P elements and the surrounding 
genomic locus were used to identify deletion alleles (5′-T A C T A T T C C T T T C A-
C T C G C A C T T A T T G -3′ and 5′-T A G A T G A G G A A G T T C T G C G T G C A A G A -3′, 
5′-C C T C G A T A T A C A G A C C G A T A A A A C -3′ and 5′-C G A C C T T C A C C G A C T-
G A T C C T G G A T -3′). Two additional primer pairs, one producing a novel 
PCR product spanning the deleted HIPK locus (5′-G T G T C A C T C G A A A T T-
C G C C A G T G A C T -3′ and 5′-G A C G A C T G A C T C G G T A G C C T A C T T C G -3′) 
while another specifi c to the deleted locus producing a negative result 
(5′-C G C T A C T A T C G T G C T C C C G A A A T C A T -3′ and 5′-C G G A T G C C T T G A C-
A T T G T T G C A G T -3′), were used to confi rm deletions.

Germline clones
Germline clones were generated using the dominant female sterile technique 
described previously (Chou et al., 1993; Chou and Perrimon, 1996).

Whole eye clones
HIPK D1-FRT79/TM6 was crossed to ey-FLP/Cyo; FRT79 GMR-Hid/TM6y+, 
and pupated animals were removed and aged for 48–55 h. After aging, 
pupal eyes were dissected and fi xed in 4% formaldehyde in PBS. Aged 
matched siblings carrying TM6y+ were used as controls.

Immunohistochemistry
Immunohistochemistry was performed as described in Chew et al. (2004). 
Guinea pig α-Kruppel was used 1:600 (Kosman et al., 1998), rabbit 
α-dHb9 was used 1:500 (Broihier and Skeath, 2002), and α-Dlg was used 
1:500 (Developmental Studies Hybridoma Bank) at 4°C overnight. Sec-
ondary antibodies used were labeled with Texas red or Fluorecein from 
Vector Laboratories (1:250) or Alexa 568 from Invitrogen (1:500). Geno-
typing was done using anti-GFP (1:1,000) from Invitrogen recognizing 

GFP-labeled balancers. Confocal z-series were taken using a confocal 
 microscope (TCS SP5; Leica) and used for counting. Z-series were stacked 
for presented images.

Microscopy
Adult wings were dry mounted, and images were acquired using a micro-
scope (Stemi V6; Carl Zeiss MicroImaging, Inc.) equipped with a 1.0× 
lens using a digital camera (Coolpix5000; Nikon) or a stereomicroscope 
(SteREO Discovery V.12; Carl Zeiss MicroImaging) with Pentafl uarS using 
0.63× or 1.5× PlanApoS lenses and an MRm or MRc5 digital camera 
(Axiocam) and Axiovision Release 4.6 software. Additional fl uorescent 
wing images were acquired with a microscope (Axioplan 2E; Carl Zeiss 
MicroImaging, Inc.) and a monochrome digital camera (Hamamatsu) us-
ing Plan Neofl uar 10×/0.30, Plan Apochromat 20×/0.60, and Plan 
Neofl uar 40×/0.75 objectives and OpenLab software. Confocal images 
of tissues stained with Fluorescein and Alexa 568 were mounted in Vecta-
shield (Vector Laboratories), and images were acquired on a confocal 
 microscope (TCS SP5; Leica) with Leica LAS AF software. The following lenses 
were used: HC PL APO 20×/0.70, HCX PL APO 40×/1.25-0.75 oil, and 
HCX PL APO 63×/1.40-0.60 oil objectives. All images were taken at 
room temperature and were processed in ImageJ or Photoshop 7.0. Occa-
sionally, images were linearly rescaled to optimize brightness and contrast 
uniformly without altering, masking, or eliminating data.

Online supplemental material
Fig. S1 displays the wing phenotypes characterized in the mosaic screen. 
Videos 1–3 are time-lapse experiments showing PCD of wing epithelial 
tissue taken as described in Materials and methods. Table S1 displays a sum-
mary of the P insertion wing mosaic screen, Table S2 lists loci implicated in 
coordinated death in the wing epithelium, and Table S3 is a summary of all 
strains screened. Online supplemental material is available at http://www
.jcb.org/cgi/content/full/jcb.200702125/DC1.
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