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Abstract. Smooth muscle cells (SMC) in rat carotid 
artery leave the quiescent state and proliferate after 
balloon catheter injury, but the signals for mitogenesis 
are not known. In this study, the possibility that cells 
within damaged arteries produce a growth factor that 
could act locally to stimulate SMC replication and re- 
pair was examined. We found that the genes for 
PDGF-A and -B (ligand) and PDGF receptor (oe and/~ 
subunits) were expressed in normal and injured carotid 
arteries and were independently regulated during re- 
pair of carotid injury. Two phases of PDGF ligand and 
receptor gene expression were observed: (a) In the 
early stage, a large decrease in PDGF ~-receptor 
mRNA levels preceded 10- to 12-fold increases in 
PDGF-A transcript abundance in the first 6 h after 
wounding. No change in PDGF c~-receptor or PDGF-B 
gene expression was found at these times. (b) In the 

chronic phase, 2 wk after injury, neointimal tissue had 
lower levels of PDGF u-receptor mRNA (threefold) 
and higher levels of PDGF ~-receptor mRNA 
(three- to fivefold) than did restored media. Moreover, 
in situ hybridization studies identified a subpopulation 
of neointimal SMC localized at or near the luminal 
surface with a different pattern of gene expression than 
the underlying carotid SMC. Luminal SMC were 
strongly positive for PDGF-A and PDGF/3-receptor 
transcripts, while showing little or no hybridization for 
PDGF-B or PDGF or-receptor. Immunohistochemical 
studies showed strongly positive staining for PDGF-A 
in SMC along the luminal surface. These data show 
that changes in PDGF ligand and receptor expression 
occur at specific times and locations in injured carotid 
artery and suggest that these changes may play a role 
in regulating arterial wound repair. 

V 
ESSEL wall injury produced by passage of a balloon 
catheter through the lumen of an artery initiates a 
sequence of smooth muscle cell (SMC) ~ responses 

including proliferation, migration toward the damaged sur- 
face, and formation of a fibrocellular neointima (Bjorkerud 
and Bondjers, 1971; Stemerman and Ross, 1972; Spaet et 
al., 1975; Schwartz et al., 1975). The stimuli that signal 
these cellular responses in vivo are not known. Platelet de- 
granulation products may play a role in initiation of this pro- 
cess (Ross, 1986), but lack of continued platelet interactions 
with the injured artery at later times (Groves et al., 1979; 
Clowes et al., 1986; Jorgensen et al., 1988) suggests that 
other factors, perhaps those produced by cells in the regener- 
ating vessel wall itself, direct continued SMC proliferation 
during repair of arterial injury. 

The concept of endogenous control of SMC wound repair 
by local growth factor production in vivo is supported by 
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1. Abbreviations used in this paper: ODC, ornithine decarboxylase; SMC, 
smooth muscle cells. 

reports that a change in SMC growth properties accompanies 
the repair process. For example, explants of mechanically in- 
jured rat aorta show increased SMC migration from the ex- 
plant with a greatly reduced serum requirement for growth 
than SMC outgrowth from explants of normal aorta (Rhee 
et al., 1977; Grfinwald et al., 1984). This might be explained 
by the findings that, under certain circumstances, medal  
SMC in vitro produce peptide growth factors that can stimu- 
late their own growth (Seifert et al., 1984; Nilsson et al., 
1985; Clemmons et al., 1985) and migration (Grotendorst 
et al., 1981). Indeed, SMC cultured from injured rat carotid 
arteries secreted increased amounts of a PDGF-like activity 
into conditioned media than did comparable isolates from 
uninjured carotids (Walker et al., 1986). However, it is not 
clear how behavior of cells in culture relates to the activity 
of SMC in regenerating vessel wall in vivo. This is of particu- 
lar concern for PDGF-A and PDGF-B genes because it is 
known that their expression is greatly increased when artery 
wall cells are placed in culture (Barrett et al., 1984; Majesky 
et al., 1988; Sj61und et al., 1988). 

PDGF can be composed of two distinct but related poly- 
peptides (A and B) that are products of unique genes 
(reviewed in Ross et al. [1986]). All three dimeric combina- 
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tions (AA, AB, BB) have been purified from natural sources 
(Hart et al., 1990). Biological activities of the PDGF iso- 
forms are often dissimilar on the same target cell type (Nist& 
et al., 1988). This may be due to different numbers of dis- 
tinct binding sites available for each ligand on target cells 
(Kazlanskas et al., 1988; Seifert et al., 1989). Two separate 
PDGF receptor genes (oL and fl) have been identified (Yarden 
et al., 1989; Hart et al., 1988; Claesson-Welsh et al., 1988; 
Gronwald et al., 1988; Matsui et al., 1989; Lee et al., 1990). 
Products of these genes exist at the cell surface as monomers 
that can associate to form noncovalent dimers capable of 
binding dimeric PDGF molecules with high affinity (Seifert 
et al., 1989; Heldin et al., 1989; Williams, 1984). The/~-sub- 
unit binds only the/~-chain of PDGF whereas the or-sub- 
unit binds both A- and B-chains. This difference in ligand 
specificity of the receptor subunits determines the isoform 
specificity of high-affinity dimeric receptors: jS/~ receptors 
bind only PDGF-BB, ot/~ receptors bind PDGF-AB or -BB 
and o~o~ receptors bind all three isoforms with high affinity. 
Since not all forms of PDGF receptor are capable of binding 
all isoforms of PDGF, the biological functions of PDGF in 
vivo could be regulated at the levels of receptor number (Ter- 
racio et ai., 1988) and composition as well as ligand concen- 
tration and composition. This argues for a need tO determine 
expression levels for both ligand genes and both receptor 
subunit genes before suggesting the existence of a PDGF- 
dependent endogenous regulatory mechanism. 

In the studies reported here, we have explored the proper- 
ties of cells repairing extensive injury to rat carotid artery 
in vivo with regard to the following questions. (a) Do cells 
in quiescent carotid artery express the genes for PDGF (A, 
B) or PDGF receptor subunits (o~, B) before injury7 (b) Is 
expression of the ligand genes (PDGF A or B) stimulated in 
vessel wall cells during repair of the wound? (c) Are the 
PDGF receptor genes (or, B) expressed in regenerating arter- 
ies and, if so, how does their expression vary in relation to 
that of the ligand genes? and (d) What do the patterns of 
PDGF ligand and receptor gene expression suggest about 
possible roles for locally produced PDGFs in cellular re- 
sponses to arterial injury? 

Materials and Methods 

Arterial Injury Model 

Male Sprague-Dawley rats (500 g, 5 mo old) (Tyler Laboratories, Bellevue, 
WA) were anesthetized and acute injury to the left common carotid artery 
was made with an inflated balloon catheter as previously described (Clowes 
et al., 1983). At the indicated times after injury, animals were killed and 
both injured (left) and uninjured (right) common carotids were retrieved and 
stripped of periadventitial fatty and connective tissues in PBS at 4°C. En- 
dotheliumof the right carotid was removed by gently scraping the luminal 
surface with the edge of a Teflon card. Efficacy of this procedure was 
verified by loss of hybridization signal for von Willebrand's factor mRNA. 
Arteries were then snap frozen in liquid nitrogen for subsequent RNA isola- 
tion. In some cases, thickened neointima from regenerating carotid arteries 
was separated from underlying media by careful dissection under 
magnification and RNA from the two tissue preparations was analyzed 
separately. 

RNA Isolation and Blot Hybridization 
Frozen arterial tissue was ground to a fine powder under liquid nitrogen and 
total cellular RNA was prepared by acid guanidinium thiocyanate-extrac- 
tion as described (Chomczynski et al., 1987). Agarose gel electrophoresis 

and RNA transfer to nylon membranes (Zeta Probe; Bio-Rad Laboratories, 
Richmond, CA) were carried out as previously described (Majesky et al., 
1988). After transfer, RNA blots were exposed to short-wave UV light both 
to cross-link RNA to the membrane and to visualize the major ribosomal 
RNA bands. At this point, photographs were taken and assurance was made 
that equal amounts of total cellular RNA had transferred to the membrane. 
Blots were hybridized as previously described (Majesky et al., 1988) using 
eDNA probes labeled with 32P-dCTP by random primer extension (Amer- 
sham Corp., Arlington Heights, IL) and then mmhed at 60°C in two changes 
of 0.045 M NaCI/0.0045 M sodium citrate, pH 7.0/0.1% SDS for 10 min 
each and exposed to Kodak X-AR5 film (Eastman Kodak Co., Rochester, 
NY) at -70°C. 

~2P-Autoradiography 

For quantitation of 32p-autoradiographic signals, blots were exposed to 
preflashed film and exposures were collected at increasing intervals (two- 
fold) of time. Autoradiograms were scanned at 600 nm with a Beckman la- 
ser densitometer (Beckman Instruments Co., Fullertun, CA). The differ- 
ence in exposure times required to produce signals of equal film density was 
determined for each comparison made. This difference was taken as the rel- 
ative change in levels of a particular mRNA species. To compare signal in- 
tensifies from replicate experiments, two types of controls were performed: 
(a) an identical amount of human osteosarcoma cell line U-20S RNA from 
a common original source was included on each blot run. Transcript levels 
for carotid samples run on different days were then compared when signal 
intensities for the U-20S transcripts were equivalent. (b) A sample of 
carotid RNA from a previous experiment was included each time a new ex- 
periment was analyzed. In this way, absolute signal intensities from different 
experiments could be made comparable by the U-20S controls and relative 
comparisons could be made of test samples analyzed on different days by 
using the carotid RIgA controls. For these studies, transcript levels were 
normalized to total cellular RNA. 

In Situ Hybridization 

In situ hybridizations were carried out as previously described (Wilcox et 
al., 1988). Carotid arteries were rinsed in ice-cold PBS, a 5-mm portion 
from the middle of the common carotid was excised, placed in 4% 
paraformaldehyde-0.1 M sodium phosphate buffer, pH 7.4, at 4°C for 3 h 
and then transferred to sterile 15% sucrose/PBS overnight. The tissue was 
frozen in OCT (Miles Scientific Laboratories, Elkhart, IN) and stored at 
-70°C. Frozen sections (5 #m) were thaw-mounted on polylysine-coated 
slides, pretreated with proteinase K (1 #g/mi, 10 rain), prehybridized for 
2 h in 50 #1 of prehybridization buffer (0.3 M NaCI/20 mM Tris, pH 8.0/5 
mM EDTA/lx Denhardt's solution/10% dextran sulfate/10 mM DTT/50% 
formamide) and hybridized by addition of 300,000 cpm of 3sS-riboprobe in 
a small volume of prehybridization buffer. After hybridization, the sections 
were washed with 2x  SSC/10 mM fl-mercaptoethanol/1 mM EDTA (twice 
for 10 rain each) (lx SSC = 150 mM NaC1, 15 mM sodium citrate, pH 
7.0), treated with RNase (20 #g/mi, 30 rain at room temperature), washed 
in 2× SSC (as above) followed by a high stringency wash as 55°C. The re- 
maiuing steps were carried out exactly as described (Wilcox et al., 1988). 
3sS-riboprobe transcripts were prepared from the following plasmids: (a) 
pF9A5 contains a 0.9-kb mouse PDGF-A eDNA fragment and was a gener- 
ous gift ofM.  Mercola and C. Stiles, Harvard University, Boston, MA; (b) 
pCB8BA1A2 contains a 500 bp mouse PDGF-B genomic fragment and was 
also provided by Mercola and Stiles; (c) pS02E/B5 contains a full-length 
6.4-kh eDNA insert for rat PDGF receptor a-subunit (Lee et al., 1990), 
and a 1.4-kb Bam HI fragment from the external domain subcloned into 
pGEM-3 was used, and (d) pmPDGFR carries a full-length 5.8-kb eDNA 
for mouse PDGF receptor fl-subunit (Yarden et al., 1986) and was provided 
by L. T. Williams (University of California, San Francisco). A 1.2-kb Hinc 
II fragment subcloned into pGEM-3 was used. 

D NA Probes 
DNA probes used for RNA blot hybridizations were as follows: PDGF-A, 
a 1.3-kb Eco RI human eDNA fragment released from pD1 (Betsholtz et 
al., 1986); PDGF-B, a 2.1-kb Sac I-Sac II human eDNA fragment for 
pSM-I (Ratner et al., 1985); PDGF t-receptor, a 4.7-kb ECO RI-Xba I hu- 
man eDNA fragment from phPDGF-R (Gronwald et al., 1988); PDGF 
a-receptor, a 6.4-kb Eco RI rat eDNA from pS02E/B5 (Lee et al., 1990); 
histone, a 1.7-kb Ava I-Sal I mouse genomic fragment from pH312 (Stimac 
et al., 1984); ornithine decarboxylase (ODC), a 1.0-kb Sal I-Hind HI 
mouse eDNA fragment (McConlogue et al., 1984); los, a 1.0-kb Pst I 
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Figure L Expression of c-fos, 
ODC, and histone genes after 
carotid injury. Total cellular 
RNA was isolated from left 
carotid arteries at the times indi- 
cated after balloon catheter in- 
jury (10-12 vessels pooled per 
time point). 12 /~g was electro- 
phoresed, transferred to a nylon 
membrane, and hybridized with 
32p-labeled eDNA probes as in- 
dicated. At 2 wk (W), the neoin- 
tima (I) was stripped off the tm- 
derlying media (M) before RNA 
isolation. Blots were exposed to 
film for 16 h. 

genomic fragment from pfos-1 (Curran et al., 1982); yon W'dlebrand's fac- 
tor, a 1.8-kb Sac I human eDNA from pUC18/r3SaeI-I (Sadler et al., 1985). 

lmmunohistochemistry 
Segments from normal and balloon catheter-injured rat common carotid ar- 
teries were embedded in OCT (Tissue Tek) and frozen sections (5 #m) were 
thaw-mounted onto glass slides. Sections were incubated in 0.3 % hydrogen 
peroxide in cold methanol for 30 rain to block endogenous peroxidase activ- 
ity and permeabilize the cells. Nonspeeific binding of rabbit IgG was 
blocked by preincubation with normal goat IgG (1:50 in PBS/0.1% BSA). 
The sections were sequentially incubated at room temperature with rabbit 
anti-human PDGF-AA IgG (1:100) (Hart et al., 1990) for 1 h, biotinylated 
goat anti-rabbit IgG (1:500, Vector Laboratories, Burlingame, CA) for 30 
rain, and avidin-peroxidase (ABC kit, Vector Laboratories) for 30 rain. 
Each incubation was followed by a wash in PBS and a 15-rain incubation 
in PBS/0.1% BSA. Staining was visualized with 0.05% 3,3'-diaminoben- 
zidine/0.03 % hydrogen peroxide in 0.05 M Tris pH 7.6. Slides were rinsed 
in 0.05 M Tris pH 7.6 and counterstained with methyl green. The rabbit anti- 
PDGF-AA IgG used for this study was prepared against recombinant human 
PDGF-AA and recognizes PDGF-AA and PDGF-AB but not PDGF-BB, as 
previously described (Hart et al., 1990). 

Results 

Rapid Activation of Genes Associated with Cell 
Proliferation after Carotid Injury 
We previously showed that a subset of SMC rapidly exit the 
quiescent state and proliferate after balloon catheter-injury 
to rat carotid artery (Majesky et al., 1987). To examine the 
kinetics of activation of genes whose expression may be criti- 
cal for this transition, total cellular RNA was isolated at vari- 
ous times after carotid injury and examined by RNA transfer 
blot analysis. 

cofos 

Rapid and transient increases in c-fos transcripts (2.2-kb) 

were found in injured left carotids (Figs. 1 and 3). Stimulated 
c-fos gene expression was evident at 30 rain, maximal at 60 
min (>40-fold above uninjured carotids) and diminished to 
barely detectable levels by 2 h. No further change in c-fo s 
gene expression was seen in wounded carotids during the 
2-wk period studied. Barely detectable levels of c-fos mRNA 
in uninjured right carotids remained unchanged at the times 
shown in Fig. 1 (data not shown). 

ODC 
In a previous study, we showed that ODC activity is tran- 
siently stimulated in wounded carotid arteries, reaching 
maximal values (23-fold above uninjured carotids) at 6 h  
(Majesky et al., 1987). We show here that levels of ODC 
transcripts (2.7 and 2.2 kb) rapidly increase and then de- 
crease after carotid injury in a similar pattern (Fig. 1). Thus, 
ODe activity is probably determined by levels of mRNA 
available for active enzyme synthesis. Like c-los, only a sin- 
gle peak of ODC transcript accumulation was seen during 
the 2-wk period studied, corresponding in time to transition 
of a majority of SMC from quiescence (Go) into the 
prereplicative (G1) phase. 

Histone 
SMC in injured carotid arteries enter S phase around 24 h 
after wounding with maximal rates of DNA synthesis ob- 
served at 33 h (Majesky et al., 1987). Histone transcripts 
were barely detectable in the first 8 h after injury (Figs. 1 
and 3). Large increases in histone mRNA levels were found 
at 24 and 48 h, corresponding to the peak period of DNA 
synthesis detected previously by thymidine autoradiography 
(Clowes et al., 1983). Histone transcript levels declined by 
1 wk, but remained elevated compared With uninjured 
carotids. By 2 wk, histone mRNA in neointima was five- to 

Majesky et al. PDGF Gene Expression during Carotid Repair 2151 

D
ow

nloaded from
 http://rupress.org/jcb/article-pdf/111/5/2149/1464487/2149.pdf by guest on 23 April 2024



Figure 2. Expression of PDGF-A 
and PDGF receptor subunit (tx 
and B) genes after carotid injury. 
Isolation of total cellular RNA, 
electrophoresis, blot transfer and 
abbreviations used are described 
in the legend to Fig. 1. 12 #g of to- 
tal cellular RNA per lane was ex- 
amined. The same blot was hybrid- 
ized sequentially with PDGF-A, 
PDGF receptor B-subunit, and 
PDGF receptor c~-subunit probes. 
Washed blots were exposed to film 
for 18, 12, and 48 h respectively. 

¢ightfold more abundant than in underlying media of regen- 
erating left carotid arteries. Histone mRNA levels were un- 
changed in uninjured right carotids during this same 2-wk 
period (data not shown). 

Arterial Injury Samulates Transient 
Gene Expression for PDGF-A and Rapid Loss of 
PDGF Receptor {3 mRNA 

PDGF-A. A family of PDGF-A transcripts (2.9, 2.3, and 
1.7 kb) was present at low levels in uninjured carotids (Figs. 
2 and 3), similar to previously reported results for adult rat 
aorta (Majesky et al., 1988; Sjtlund et al., 1988; Sarzani 
et al., 1989). Arterial injury evoked large and transient stim- 
ulation of PDGF-A gene expression in damaged left carotids, 
but not in uninjured right carotids (Fig. 2). Detectable in- 
creases in PDGF-A mRNA levels (3-fold) were observed 4 h 
after wounding and reached maximum (10- to 12-fold above 

.~ II i 
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Figure 3. Rapid changes in 
gene expression during the 
first 48 h after carotid injury. 
Rats (n = 12 per time point) 
were killed at the indicated 
times after carotid injury. Auto- 
radiographs of RNA transfer 
blots shown in Figs. 1 and 2 
were scanned with a laser den- 
sitometer and relative signal 

intensities (expressed as a percent of the signals producing the 
greatest film density for each transcript shown) were plotted. Sym- 
bols used: (o) c-fos; (e) PDGF-A; (n) PDGF receptor/3-subunit; 
(m) histone. Changes in gene expression similar to those plotted 
above were observed in two additional arterial injury experiments. 
Transcript levels for PDGF-B and PDGF ~-subunit are not shown 
as they varied less than twofold during the above time period. 

uninjured carotids) at 6 h. Similar changes in PDGF-A gene 
expression after acute injury were seen in three separate ex- 
periments. By 24 h, when SMC enter S phase, PDGF-A tran- 
script abundance declined to about fourfold above levels in 
uninjured carotids. Slightly increased amounts of PDGF-A 
mRNA were present at 1 wk after injury. No difference in 
PDGF-A mRNA levels was found between dissected por- 
tions of intimal or medial tissues from injured vessels at 
2 wk when compared with uninjured carotids. All three size 
classes of PDGF-A mRNA coordinately increased and de- 
creased in abundance. 

PDGF-B. A single 3.5-kb transcript for PDGF-B was 
found at low levels in uninjured carotids, similar to "previ- 
ously reported results for adult rat aorta (Majesky et al., 
1988; Sorzani et al., 1989). This low level of PDGF-B gene 
expression was unchanged over the 2 wk studied after carotid 
injury (data not shown). PDGF-B mRNA levels were not 
significantly different between neointima and media of in- 
jured (left) carotids at 2 wk after wounding nor in uninjured 
(right) carotids at any of the times studied. 

PDGF B-Receptor. Reports that PDGF-AA and PDGF-BB 
elicit contractions of freshly isolated rat aortic strips indicates 
that normal artery wall from adult rats contains at least some 
functional PDGF receptor o~ and/3 subunits (Berk et al., 1986; 
Block et al., 1989). 

Consistent with these reports, readily detectable levels of a 
single 5.7-kb transcript for PDGF j3-receptor were found in 
uninjured carotid arteries (Fig. 2). Rapid loss of PDGF/3-re- 
ceptor mRNA occurred in the first 4 h after injury (Figs. 2 and 
3). PDGF/3-receptor mRNA levels were reduced ,'~50% at 
2 h, a change that preceded increases in PDGF-A mRNA in the 
same injured arteries. Further reductions in PDGF B-receptor 
mRNA levels were found at 4 h, resulting in ,x,80% loss of 
receptor transcripts compared with uninjured carotids. This 
acute loss of PDGF B-receptor mRNA in injured arteries was 
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Figure 4. Localization of PDGF and PDGF receptor gene expression in carotid neointima 2 wk after injury. Serial sections were taken 
from the central portion of left common carotid artery 2 wk after injury. At this time, endothelial cell regeneration from the distal ends 
of the common carotid has not progressed into the central one-third of rat carotid artery (Reidy, 1985), therefore cells lining the luminal 
surface are neointimal smooth muscle cells. Sections were hybridized with the relevant 3sS-labeled cRNA probe as follows: (A and C) 
PDGF-A (x l00  and x310); (B and D) PDGF/3-receptor (x l00  and x310); (E) PDGF-B (x310); (F) PDGF a-receptor (x310). Autora- 
diographic grains were not found accumulated at cut edges of the media or along adventitial tissue edges for any of the probes used. Photo- 
graphs were made using a combination of polarized light epiluminescence and bright field illumination. The lumen of the artery is at top. 
(I) intima, (M) media, (A) adventitia, (IEL) internal elastic lamina. 
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observed in three separate experiments. Over the next week, 
gradual increases in PDGF ~receptor levels were observed so 
that about twofold greater amounts were present 1 wk after in- 
jury than in uninjured vessels. PDGF/~-receptor mRNA levels 
were consistently three to fivefold higher in neointima than un- 
derlying media at 2 wk in three separate experiments. 

PDGF a-Receptor. A single 6.5-kb transcript for PDGF 
a-receptor was detected in uninjured carotids (Fig. 2). No 
significant change in PDGF a-receptor mRNA levels was 
found in the first week after carotid injury. The variations in 
signal intensity for PDGF a-receptor transcripts between 
24 h and 1 wk shown in Fig. 2 were not consistently found 
in a repeat experiment, and may reflect variations between 
animals. However, PDGF or-receptor mRNA was reproduci- 
bly found to be two to threefold more abundant in media than 
in neointima at 2 wk. No significant changes in either PDGF 
a or B-receptor transcript levels were found in uninjured 
right carotids during these 2 wk after left carotid injury. 

In Situ Hybridization Analysis of Carotid 
Neointimal Thickening 
Previous studies showed that rates of SMC proliferation are 
not uniform throughout the thickness of neointimal tissue 
during its formation and growth after carotid injury (Clowes 
et al., 1983; Clowes and Schwartz, 1985). Rather, a highly 
localized region of SMC proliferation is found at or near the 
luminal surface. To more closely examine the relation of 
PDGF ligand and receptor gene expression to ongoing SMC 
proliferation during carotid intimal thickening, we used in 
situ hybridization to resolve transcript distribution at the cel- 
lular level. 

PDGF-A. Consistent with RNA blot hybridization results 
(Fig. 2), in situ hybridization analysis showed that a majority 
of cells in the left carotid media and neointima at 2 weeks 
after injury were negative for PDGF-A gene expression. 
However, a subset of neointimal SMC located in close prox- 
imity to the luminal surface was strongly positive for PDGF- 
A hybridization (Fig. 4 A). This finding was consistently 
observed in neointimal sections from four separate experi- 
ments. Since endothelial cell regeneration from the distal 
ends of the common carotid artery has not progressed into 
the central portion of the artery at this time (Reidy, 1985; 
Clowes et al., 1986), cells lining the luminal surface and 
strongly positive for PDGF-A mRNA are neointimal SMC 
not endothelial cells (Reidy, 1985). SMC deeper into the 
center of the neointima as well as the restored media ap- 
peared quite similar to the uninjured carotid with few, if any, 
cells positive for PDGF-A hybridization. 

PDGF-B. RNA transfer blot analysis showed low levels of 
PDGF-B transcripts in carotid neointima 2 wk after injury 
(data not shown). Likewise, in situ hybridization detected no 
cells that were clearly positive for PDGF-B transcripts in 
carotid neointima (Fig. 4 E). 

PDGFl3-Receptor. Transcripts for PDGF/~-receptor were 
abundant in neointimal SMC that line the luminal surface at 
2 wk after injury (Fig. 4 B). Cells expressing the PDGF 
/~-receptor gene were localized around the luminal surface 
so that at low magnification the pattern of silver grains ap- 
peared as a ring that traced the lumen of the artery. PDGF 
/~-receptor transcripts were also present in SMC deeper 
within the neointimal thickening but at reduced levels. This 
pattern of PDGF ~receptor transcript localization was a 

consistent finding in four separate experiments. Thus a re- 
markably similar distribution of PDGF-A and PDGF/~-re- 
ceptor gene expression is evident in rat carotid neointima 
two weeks after injury. Given the apparent uniformity of sil- 
ver grain distribution in the luminal SMC population for ei- 
ther of these two transcript species, it is highly likely that the 
same cells express both PDGF-A and PDGF /3-receptor 
genes at the same time during neointimal thickening. 

PDGF a-Receptor. Transcript abundance for PDGF a-re- 
ceptor in carotid neointima appeared greatly reduced com- 
pared with that of PDGF B-receptor both by RNA blot analy- 
sis and in situ hybridization (Fig. 4 F). Cells positive for 
PDGF a-receptor mRNA were only detected occasionally 
and were scattered throughout the neointima. Among four 
different experiments, PDGF a-receptor-positive SMC were 
more variable in number (generally very few) and location 
within the neointima than were PDGF-A and PDGF/~-recep- 
tor-positive cells. A striking luminal localization was not 
seen in any of the sections examined. 

Immunohistochemistry 
The distribution of PDGF-A-containing SMC within carotid 
neointima was examined using an antibody that recognizes 
PDGF-AA and PDGF-AB, but not PDGF-BB (Hart et al., 
1990). Positive intraceUular immunostaining was consis- 
tently found in neointimal SMC, particularly among those 
located at or near the luminal surface (Fig. 5). This staining 
pattern is quite similar to the distribution of PDGF-A mRNA 
in neointimal SMC as detected by in situ hybridization 
(above). Perinuclear staining (possibly Golgi complex) was 
frequently observed. Normal uninjured carotid SMC ex- 
hibited faint, perinuclear staining with no luminal concen- 
tration. Substitution of anti-PDGF-AA with normal rabbit 
IgG (Fig. 5), phosphate buffered saline or an irrelevant anti- 
body (anti-transforming growth factor-a) (not shown) pro- 
duced no staining of carotid neointimal sections. 

Discussion 

We and others have suggested that SMC proliferation at sites 
of arterial injury might depend on growth factors produced 
locally by vessel wall cells themselves (Reidy, 1985; 
Schwartz et al., 1985; Ross, 1986; Walker et. al., 1986; 
Libby et al., 1989; Majack et al., 1990). This model requires 
that SMC also express functional growth factor receptors 
during tissue repair. We explored these possibilities in this 
study by examining expression of PDGF-A and B (ligand) 
and PDGF receptor (a and/3 subunits) genes during repair 
of extensive injury to rat carotid artery. For purposes of dis- 
cussion the results are divided into four stages based on our 
earlier studies of the kinetics of SMC proliferation in this 
model (Clowes et al., 1983; Clowes and Schwartz, 1985; 
Schwartz et al., 1985). 

Stage 1: PDGF Gene Expression in Normal Artery 
Quiescent, uninjured carotid artery contained transcripts for 
PDGF-A, PDGF-B, and both PDGF receptor subunits indi- 
cating that normal vessel wall has the potential to synthesize 
and respond to PDGF isoforms. Since DNA synthesis is a 
rare event in adult rat carotid (Clowes et al., 1983), this 
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Figure 5. Immunocytochemical localization with anti-PDGF-AA antibody in rat carotid neointima. Frozen sections of rat carotid were 
stained with a polyclonal rabbit anti-PDGF-AA IgG (1:100) (Hart et al., 1990). (A) Carotid neointima 2 weeks after injury. Note the strong 
positive staining along the luminal surface and more scattered staining in the rest of the neointima. (×100). (B) A luminal portion of carotid 
neointima 2 wk after injury (×400). (C) Carotid neointima 2 wk after injury stained with control rabbit IgG (1:100) (×100). (D) Normal, 
uninjured rat carotid stained with anti-PDGF-AA (1:100). Note scattered, low level of positive staining in the media and adventitia with 
a lack of luminal distribution (×100). 

might suggest that PDGFs produced locally have some non- 
mitogenic role in artery wall function (Berk et al., 1986; 
Barrett et al., 1988; Majesky et al., 1990). The finding of 
PDGF ot and/5-receptor transcripts in normal artery is con- 
sistent with reports that each of the PDGF isoforms (AA, 
AB, BB) can evoke contractions of freshly isolated strips of 
rat aorta (Berk et al., 1986; Block et al., 1989). Indeed, con- 
trol of smooth muscle contractile tone may be one function 
for locally produced PDGFs in normal artery wall (Berk et 
al., 1986; Block et al., 1989; Majesky et al., 1990). 

Stage 2: PDGF Gene Expression in the First 48 h 

Balloon catheter injury stimulates carotid SMC to rapidly 
exit the quiescent (Go) state and synchronously progress 
through the prereplicative (GO and S phases during the first 
48 h after wounding (Majesky et al., 1987). We show here 
that a large and transient increase in PDGF-A mRNA pre- 
cedes SMC S phase entry. The kinetics of stimulated PDGF- 
A gene expression after carotid injury are similar to transient 
increases in PDGF-A mRNA in cultured fibroblasts exposed 
to PDGF or epidermal growth factor (Paulsson et al., 1987). 
The presence of PDGF a-receptor transcripts in injured 

carotids suggests that SMC could respond to PDGF-A- 
containing isoforms that they produce. SMC-derived PDGFs 
might function as part of an intercellular cytokine signaling 
network (Raines et al., 1989) coordinating changes in gene 
expression and anabolic metabolism needed for cellular 
growth prior to DNA synthesis and cell division (Cochran 
et al., 1981; Pegg, 1986). 

Acutely injured carotids also contain PDGF B-receptor 
transcripts. Because PDGF released from rat platelets is 
mostly PDGF-BB (Bowen-Pope et al., 1989), SMC appear 
able to respond to rapid appearance of PDGF at sites of vas- 
cular injury resulting from platelet degranulation. The rapid 
decrease in PDGF ~receptor mRNA levels seen in the first 
4 h after injury implies that signals generated by the injury 
event itself are important regulators of PDGF/~-receptor 
gene expression in vivo (Gronwald et al., 1989). 

Stage 3: PDGF Gene Expression at 2 and 7 d 
afler lnjury 

Days 2 and 7 after carotid injury are characterized by con- 
tinued SMC proliferation, directed migration, and appear- 
ance of a fibrocellular neointima (Clowes et al., 1983). 
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Whereas cell replication is very active at these times (Clowes 
et al., 1983), the low levels of PDGF-A and B gene expres- 
sion detected by RNA blot analysis do not provide obvious 
clues as to a local stimulus for this proliferation. Increases 
in PDGF/3-receptor mRNA detected between 2 and 7 d after 
wounding may be due to selectively increased amounts of 
this transcript in neointimal SMC. Rats made deficient in cir- 
culating platelets by an antiplatelet antibody had a delayed 
appearance of SMC in the intima of wounded carotids (Fin- 
gerle et al., 1989). Since neointimal SMC contain abundant 
PDGF /3-receptor mRNA, this delay might suggest that 
PDGF-BB released from platelets plays an important role in 
neointima formation. Stimulation of SMC chemotaxis and 
extracellular matrix production are two known properties of 
PDGF in vitro (Ross et al., 1986) that seem particularly rele- 
vant in this regard. 

Stage 4: PDGF Gene Expression in Intima and Media 
at 14d 

Between 7 and 14 d after injury two cellular compartments 
become established in regenerating carotid arteries (Clowes 
et al., 1983). Neointimal thickening proceeds by SMC 
proliferation and extracellular matrix accumulation. In con- 
trast, SMC in underlying media are restored to original 
numbers and cell replication returns to basal rates. When 
strippings of neointimal versus underlying medial tissues 
were compared, RNA blot analysis showed that PDGF-A, 

• PDGF-B, and PDGF u-receptor transcript levels were very 
low in both layers, whereas PDGF 5-receptor mRNA was 
three- to fivefold higher in abundance in neointima than in 
media. The later results are similar to findings of Rubin et 
al. (1988) that greater amounts of PDGF 8-receptor protein 
are found in SMC of human carotid atherosclerotic intima 
than normal artery. 

In situ hybridization analysis identified a subpopulation of 
neointimal SMC localized along the luminal surface with a 
different pattern of gene expression than underlying SMC. 
Luminal SMC were strongly positive for PDGF-A and 
PDGF /3-receptor transcripts. SMC positive for PDGF-B 
mRNA were not seen and PDGF a-receptor mRNA was 
found only occasionally in cells scattered throughout the 
neointima. Ongoing cell proliferation at 14 d after injury was 
previously found to be limited to a luminal subset of neoin- 
timal SMC (Clowes'et al., 1983). However, luminal SMC 
express a PDGF ligand and receptor pair (PDGF-A and 
PDGF/3-receptor) that interact poorly, if at all, with each 
other (Hart et al., 1988; Heldin et al., 1988; Seifert et al., 
1989). Since PDGF-B mRNA was barely detectable in 
carotid neointima and was not found accumulated within lu- 
minal SMC, exogenous sources of PDGF-BB such as plate- 
lets (Bowen-Pope et al., 1989) or monocytes (Shimokado et 
al., 1985) would seem probable candidates for stimulating 
luminal SMC proliferation. However, platelets and mono- 
cytes are found infrequently in rat carotid neointima (Roidy, 
1985; Jonasson et al., 1988). Thus, the local stimulus for 
neointimal SMC replication remains unclear, although the 
possibility that local PDGF-A concentrations might be high 
enough to activate at least some PDGF/5-receptors cannot 
be ruled out. 

It is also possible that coordinate expression of PDGF-A 
and PDGF/3-receptor suggests a role for PDGFs in commu- 

nication between different cell types during carotid repair. 
This scheme would allow one cell type to produce a form of 
PDGF that signals a neighboring cell type bearing the appro- 
priate PDGF receptor without the consequence of autocrine 
stimulation. For example, endothelial cells might secrete 
PDGF-BB (DiCorleto et al., 1983; Collins et al., 1985; Da- 
vies et al., 1988; Zerwes et al., 1987) during regeneration 
as a signal to neointimal SMC bearing PDGF/3-receptors 
that an endothelial lining has been restored. Large vessel en- 
dothelial cells themselves do not contain PDGF/3-receptors 
(Ross et al., 1986). A similar role for PDGF-AA has recently 
been suggested in cell-to-cell communication between type-1 
astrocytes and glial progenitor cells in the developing rat op- 
tic nerve (Raft, 1989). 

Specialization of"Pseudoendothelial" SMC 

Neointimal SMC at the luminal surface had a markedly 
different pattern of PDGF ligand and receptor gene expres- 
sion than underlying carotid SMC. Luminal SMC are mor- 
phologically specialized to provide a nonthrombogenic 
pseudoendothelium in regions of incomplete endothelial 
regeneration (Schwartz et al., 1975). Together with our 
previous findings that cultured neointimal SMC have stable 
differences in morphology and gene expression compared to 
medial SMC (Walker et al., 1986), these data raise the in- 
triguing possibility that structural specialization of luminal 
SMC described earlier (Schwartz et al., 1975) extends to 
functional and growth control levels. This may have impor- 
tant implications for mechanisms of intimal SMC prolifera- 
tion in vascular disease. 
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