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Abstract. Intestinal absorptive cells may modulate 
both the structure and function of occluding junctions 
by a cytoskeleton dependent mechanism (Madara, J. 
L., 1983, J. CeltBiol., 97:125-136). To further exam- 
ine the putative relationship between absorptive cell 
occluding junctions and the cytoskeleton, we assessed 
the effects of  cytochalasin D (CD) on occluding junc- 
tion function and structure in guinea pig ileum using 
ultrastructural and Ussing chamber techniques. Maxi- 
mal decrements in transepithelial resistance and junc- 
tional charge selectivity were obtained with 10 vg/ml 
CD and the dose-response curves for these two func- 
tional parameters were highly similar. Analysis of si- 
multaneous flux studies of sodium and the nonab- 
sorbable extracellular tracer mannitol suggested that 
CD opened a transjunctional shunt and that this 
shunt could fully account for the increase in sodium 
permeability and thus the decrease in resistance. 
Structural studies including electron microscopy of 
detergent-extracted cytoskeletal preparations revealed 
that 10 #g/ml CD produced condensation of  filamen- 
tous elements of  the pefi-junctional contractile ring 

and that this was associated with brush border con- 
traction as assessed by scanning electron microscopy. 
Quantitative freeze-fracture studies revealed marked 
aberrations in absorptive cell occluding junction struc- 
ture including diminished strand number, reduced 
strand-strand cross-linking, and failure of strands to 
impede the movement of intramembrane particles 
across them. In aggregate these studies show that CD- 
induced perturbation of the absorptive cell cytoskel- 
eton results in production of a transepithelial shunt 
which is fully explained by a defect in the transjunc- 
tional pathway. Furthermore, substantial structural 
abnormalities in occluding junction structure accom- 
pany this response. Lastly, the abnormalities in oc- 
cluding junction structure and function coincide with 
structural changes in and contraction of the peri-junc- 
tional actin-myosin ring. These data suggest that a 
functionally relevant association may exist between 
the cytoskeleton and the occluding junction of absorp- 
tive cells. We speculate that such an association may 
serve as a mechanism by which absorptive cells regu- 
late paracellular transport. 

T 
HE major route for passive permeation across the mam- 
malian ileal epithelium is paracellular (12, 25), and 
the rate-limiting barrier of this pathway appears to be 

the intercellular occluding junction (29). Furthermore, spe- 
cific structural aspects of occluding junctions, such as junc- 
tional strand counts obtained from freeze-fracture replicas, 
appear to correlate with the ability of junctions to impede 
passive transjunctional flow (6, 21), particularly if variables 
such as linear junctional density per unit epithelial surface 
are fully considered (22). Recent evidence indicates that in 
the small intestine (20), as in gallbladder epithelium (9, 27), 
physiological alterations in the cellular milieu may produce 
major alterations in occluding junction resistance, charge 
selectivity, and structure. In both epithelia, the response elic- 

ited by these specific perturbations consists of expansion of 
occluding junction structure and restriction of paracellular 
ion flow with preferential restriction of paracellular cation 
flow. These data suggest that paracellular pathway function 
may be regulated by intercellular events which produce phe- 
notypic alterations in the cell surface structure that regulates 
paracellular flow--the occluding junction. The cascade of 
intercellular events leading to such junctional modifications 
is presently undefined. However, in the instance of brief 
osmotic challenge of jejunal epithelia, the evidence suggests 
that the elicited intercellular "signals" may be translated into 
structural and functional changes in the junction by the 
absorptive cell cytoskeleton (20). 

Elegant studies of Madin-Darby canine kidney cell mono- 
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layers have shown that the microfilament perturbing agent, 
cytochalasin B, increases passive transepithelial flow of ions, 
and that this is due to increased ion flow through the para- 
cellular pathway (5, 23, 24). In natural epithelia, microfila- 
ment perturbing agents have been shown to induce alterations 
in occluding junction structure (1, 30), although functional 
assays of transepithelial permeability were either not per- 
formed or were measurements which did not specifically 
differentiate the paracellular from the transcellular pathway. 
In this study, we use cytochalasin D (CD) ~ to further probe 
the potential relationship between the cytoskeleton and the 
structure and function of occluding junctions in a natural 
epithelium. Using thick section, thin section, and Ussing 
chamber techniques, we define the effect of graded doses of 
CD on the structural and electrical characteristics of guinea 
pig ileum. Using a dual flux technique, we examine whether 
the effects of this agent on transepithelial electrical resistance 
are produced by changes in paracellular, or transcellular, 
permeability. Using quantitative freeze-fracture analysis, we 
define the effects that this agent produces on occluding junc- 
tion structure. Lastly, we use detergent extraction techniques 
to prepare and subsequently examine cytoskeletal ghosts of 
tissues from these experiments. 

Materials and Methods 
For these experiments, 12-15-cm segments of distal ileum (excluding the final 
10 cm) were obtained from Hartley-strain guinea pigs that weighed ~600- 1,000 
g. All animals were fasted overnight before use and were anesthetized with 
intraperitoneal injection of urethane. 

Physiologic Techniques 
Ileum was rapidly removed, opened, washed in chilled oxygenated buffer and 
cut into 2-cm segments. After stripping away the serosa and external longitu- 
dinal layer of the muscularis propria, these segments were mounted in modified 
Ussing chambers equipped with two calomel voltage-sensitive electrodes and 
two Ag-AgCI current passing electrodes as previously described (20). Electrodes 
were connected to the chamber solution via agar bridges. Both mucosal (M) 
and serosal (s) sides of the chamber were attached to circulating 10-ml reservoirs 
driven by a gas lift column of 95% 02/5% CO2. The reservoirs which contained 
the buffer described below were jacketed with a circulating water bath main- 
tained at 37"C. The circulating buffer solution consisted of 114 mM NaC1, 5 
mM KCI, 1.65 mM Na2HPO4, 0.3 mM NaH2PO4, 25 mM NaHCO3, 1.25 mM 
CaC12, and 1.1 mM MgSO4 at pH 7.4.20 mM glucose was added to the s buffer 
and 20 mM mannitol was added to the M buffer for all experiments except the 
flux experiments as indicated below. After a 15-rain equilibration period, 
baseline resistance was determined. Baseline tissue resistance was recorded as 
the absolute minus the fluid resistance. In these experiments, unless specifically 
stated otherwise, we optimized tissue viability by making the mucosal buffer 
like that described above but with the addition of the high oxygen affinity 
perfluorochemical, Fluosol 43 (The Green Cross Corporation, Osako, Japan). 
CD was obtained from Sigma Chemical Co., St. Louis, MO, solubilized in 
dimethyl sulfoxide, and used as a stock solution of either 1 or 2 mg CD/ml. 
After an experiment, the CD stock was stored at 4"C but was discarded after 1 
wk if unused. In CD experiments, the final dimethyl sulfoxide concentration 
was 0.5 %, a concentration which, in separate previous experiments (20) and in 
the current experiments (see Results) showed no effect on tissue resistance or 
structure. When used, CD was added to both reservoirs after equilibration. 
Final CD concentrations to which tissues were exposed ranged from 0.1 to 20 
~g/ml and durations of CD exposure ranged from 20 to 60 min. Control data 
for the CD experiments were derived from tissue treated identically save for 
the exposure to CD. 

Unidirectional serosal-to-mucosal solute fluxes of sodium and mannitol 
were determined under short-circuit conditions. After stabilization of tissues, 
20 uCi [3H]mannitol and 8 uCi 22Na+ were added to the serosal reservoir. After 
a 10-rain equilibration period, a baseline 20-min flux period was obtained. 
Tissues were then exposed to CD or vehicle only and two additional 20-min 
flux periods were analyzed. Simultaneous 2ZNa+ and [3H]mannitol fluxes were 

1. Abbreviation used in this paper." CD, cytochalasin D. 

determined by liquid scintillation. In flux experiments, both mucosal and 
serosal solutions had 15 mM glucose and 5 mM cold mannitol in order to 
avoid a transepithelial mannitol gradient. The relationship between Na + and 
mannitol flux was analyzed by linear regression. 

To assess junctional charge selectivity, 20% mucosal dilution potentials were 
measured as previously described (20). 

Morphologic Techniques 
At the end of each experiment, all tissues for routine light and electron 
microscopy and freeze-fracture were rapidly removed from the chambers and 
submerged in a 4"C solution containing 2% formaldehyde and 2.5% glutaral- 
dehyde in 0.1 M sodium caeodylate buffer at pH 7.4. After an initial 2-h 
aldehyde fixation, tissues for conventional electron microscopy of thin sections 
were washed in 0.1 M sodium eacodylate, postfixed for 1 b in t% osmium 
tetroxide, dehydrated in a graded series of alcohols, and embedded in epoxy 
resin. Toluidine blue-stained l-urn sections were obtained with glass knives. 
Representative thin sections were mounted on copper-mesh grids and stained 
with uranyl acetate and lead citrate. 

After fixation, tissues for freeze-fracture were washed in 0.1 M cacodylate 
buffer before being embedded in 3% agar and cut into 150-urn slices with a 
Smith-Farquhar tissue chopper. After equilibrating for 1 h in 25% glycerol in 
0.1 M sodium cacodylate buffer, tissue slices were mounted between two gold 
discs, rapidly frozen in partially solidified Freon 22, and stored in liquid 
nitrogen. Specimens were fractured at a stage temperature of-110*C in a 
Balzers 300 freeze-etch device, replicated with platinum-carbon, cleaned in 
commercial bleach, and mounted on Formvar-coated 200-mesh hexagonal 
grids. Morphometric quantitation of absorptive cell occluding junction struc- 
ture was performed as previously described (20). 

For extraction of soluble cytoplasmic proteins and visualization of the 
cytoskeleton, sample tissues were rapidly removed from chambers and washed 
for l rain in a 0.1 M phosphate buffer at pH 6.9. These were then detergent 
extracted by 0.1% Triton X-100 made up in a stabilization buffer which 
consisted of 0.1 M Pipes, pH 6.9, containing 0.2 mM phenylmethylsulfonyl 
fluoride, 0.2 mM dithiothreitol, 5 mM MgCI2, and 5 mM EGTA. Extraction 
was carried out for 15 min with gentle agitation. Tissues were then briefly 
washed in the above stabilization buffer in the absence of Triton X-100, and 
fixed by transferring them for 30 min to a 0.I-M phosphate buffer solution, 
pH 6.9, containing 1% glutaraldehyde and 0.2% tannic acid. After a phosphate 
buffer wash, tissues were postfixed on ice in a 0.I-M phosphate buffer solution 
containing 0.5% osmium tetroxide, at pH 6.0 for 30 min. After another rinse 
in phosphate buffer, tissues were block stained for 45 rain in a 1% aqueous 
uranyl acetate solution before being dehydrated and embedded by routine 
techniques. 

Scanning electron microscopy of the villus surface was performed as previ- 
ously described (22). 

Results 

Functional Effects of CD 
After the initial period of equilibration, ileal epithelium 
mounted in chambers maintained a stable transepithelial 
resistance for 60 rain (Fig. 1). In contrast, when exposed to 
10 ug/ml CD for 60 min, transepithelial resistance declined 
to values approximately one half that of the initial reading 
(Fig. l). The major resistance decline occurred between 10 
and 40 min after CD exposure (Fig. 1). Exposure of mucosal 
sheets to varying doses of CD for 60 min showed that a 
decrement in resistance could not be detected at doses < 1 #g/ 
ml and that the maximal effect occurred at a dose of 10 uP/ 
ml (Fig. 2). The ability of occluding junctions to preferentially 
impede anion over cation permeation, as judged by 20% 
mucosal dilution potentials, 2 also decreased to ~50% of con- 

2. To measure dilution potentials, we diluted mucosal Na and CI concentrations 
without creating an osmotic gradient across the epithelium (20). Thus, Na and 
CI are driven down their activity gradients across the occluding junction. If the 
junction is charge selective, an electrical potential will be generated, and the 
size of this potential (in mV) represents a measurement of the degree of 
junctional charge selectivity. The polarity of the potential will differentiate 
cation from anion selectivity. 
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Figure 1. Time-course of transepithelial resistance response of guinea 
pig ileal epithelium after exposure to 10 #g/ml CD. CD was added 
after a 15-min equilibration period. The major resistance decrement 
occurs in the first 40 min after exposure. 
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Figure 2. Effect of graded doses of CD on transepithelial resistance 
and on junctional charge selectivity. The dose-response curve ob- 
tained for resistance closely parallels that for charge selectivity (here, 
cation selectivity, since the data are expressed as mucosal solution 
positive), v.c. ,  vehicle control. 

trol values after 60-min exposure to 10 #g/ml CD (Fig. 2). 
Furthermore, the dose-response curve obtained for dilution 
potentials closely paralleled the dose-response obtained for 
transepithelial resistance (Fig. 2). Unidirectional fluxes of 
mannitol, an extracellular marker (8) which has a hydrody- 
namic radius small enough (3.6 A) to permeate occluding 
junctions in native (11) and in cultured intestinal epithelia 
(21 ), were also altered by CD exposure. In equilibrated control 
tissues, the mean serosal-to-mucosal mannitol flux in the first 
20-rain flux period was 6.0 #M/cm 2. h × 10 -2 (Fig. 3). After 
addition of the vehicle only, the two subsequent flux periods 
showed comparable rates of mannitol flux. In contrast, in the 
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Figure 3. Serosal to mucosal flux rates of the extracellular space 
marker mannitol in control tissues and in tissues treated with CD. 
CD was added after the first 20-min flux period. Thus the striped bar 
at 0-20 min represents the baseline flux rate of tissues which were 
subsequently exposed to CD while the dotted bar at this time interval 
represents the flux rate of tissues which subsequently were exposed 
to vehicle only. Mannitol flux is modestly increased in the 20 min 
after CD exposure, but is greatly increased in the subsequent 20-min 
flux period. In control tissues exposed to vehicle alone, flux rates are 
comparable for the three flux periods. 

two 20-min flux periods after exposure to 10 ~g/ml CD, mean 
mannitol flux was ~9.0 #M/cm 2. h × l0 -2 and 19.0 #M/cm 2- 
h x 10 -2, respectively (Fig. 3). Likewise, mean baseline sero- 
sal-to-mucosal sodium flux (9.8 ttEq/cm 2. h) was not affected 
by the addition of the vehicle but sequentially increased in 
the two flux periods after the addition of l0 ug/ml CD (11.5 
and 15.4 #Eq/cm 2. h, respectively). 

We next assessed if the CD-induced increment in paracel- 
lular permeability as indicated by the increment in mannitol 
flux could fully explain the increment in sodium flux, and 
thus the CD-elicited decrease in resistance. If the increment 
in sodium flux was wholly related to the CD-induced, man- 
nitol-permeable pathway, then the following statement would 
hold: the slope of the relationship plotting sodium flux against 
mannitol flux for all experiments would not be larger than 
the ratio of the free solution diffusion coefficients of these two 
molecules corrected for the concentrations of each present in 
the bath (8, 1 l). In other words, we are asking if the increase 
in mannitol-permeable space fully accounted for the observed 
increase in tissue permeability to ions. If so, since resistance 
measurements are measurements of tissue ion permeability, 
the data would indicate that the increment in paracellular 
mannitol permeation fully explained the alterations in tissue 
resistance. Thus, the effect of CD on tissue permeability would 
be entirely due to the effect of this agent on paracellular 
permeability. If the pathway responsible for increased man- 
nitol permeability was also responsible for the increase in 
sodium permeability, the slope of the relationship in Fig. 4 
should be no greater than D Na- 140 mM/D~"a".5 mM, where 
D is the free solution diffusion coefficient for each molecule 
at 37"C (1.78 _+ 10 -5 cm2.s - '  for sodium [31], 0.92 x 10 -5 
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Figure 4. Correlation between serosal-to-mucosal sodium and man-
nitol fluxes as determined simultaneously using dual flux techniques .
This graph, which plots all periods ofCD-exposed and non-exposed
control tissues, shows thatthe mannitol-permeable pathway (paracel-
lular) induced by CD exposure fully accounts for the increment in
Na' flux, and therefore the decrement in resistance produced by this
agent (see Discussion) .
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Figure 5. The relationship between transepithelial resistance and
sodium flux for control and CD-treated epithelia. These parameters
of permeability correlate in an asymptotic fashion .

cm Z . s ' for mannitol [ 18]) . The value for this predicted slope
is 54. The actual slope of the relationship in Fig . 4 is 31,
indicating that the induced mannitol pathway fully accounts
for the increment in sodium flux . Sodium and mannitol fluxes
were also highly correlated (r = 0.83) with one another (Fig.
4) and the intercept of this relationship was substantially
different than 0 (8.3 p,Eq Na/cm'- h).
The simultaneous flux experiments from which the above

data were derived were performed with the presence of the
oxygen carrying fluorocarbon, Fluosol, on the mucosal side .
To be certain that presence of Fluosol did not affect these
results, we repeated the experiment (control, n = 8 ; CD, n =
8) with buffer only in the serosal and mucosal compartments .
The correlation (r = 0.92), slope (33), and intercept (8 .1 AEq
Na'/cm'.h) obtained under these conditions were compara-
ble to those above .
The relationships between resistance and the serosal to

mucosal fluxes ofNa' (Fig. 5) and mannitol (Fig . 6) appeared
to be asymptotic . Such data highlight the sensitivity of resist-
ance measurements for detecting small changes in paracellular
permeability (see reference 21 for explanation ofthis phenom-
enon based on analysis of electrical circuits). As minor pop-
ulations of conductive sites are introduced into the epithe-
lium, resistance falls substantially, but mannitol flux increases
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Figure 6. The relationship between transepithelial resistance and
mannitol flux for control and CD-treated epithelia. These parameters
of permeability correlate in an asymptotic fashion .

are very minor. Since resistance values can be dominated by
a minor population ofpermeable sites (21), further expansion
ofthe number ofpermeable sites does little to further decrease
resistance . However, as high permeability sites become more
numerous, this major increase in conductive sites is readily
detected by mannitol flux-a type ofdata which reflects mean
function of permeability sites . Thus when one plots the re-
sistance readings against the flux readings of tissues progres-
sively perturbed by CD, asymptotic relationships are ob-
served.

Structural Effects ofCD Relevant to
Paracellular Pathway
Control tissue mounted in chambers for periods of up to 100
min revealed an intact ileal epithelium with villi lined pre-
dominantly by columnar absorptive cells displaying a lush
microvillus brush border, with occasional extruding cells lying
over the upper portion of the villus (Fig. 7) . This morphology
varies from that in the fasted, intact animal only in that villi
are somewhat shorter (due to the absence of an intact mus-
cularis propria), and villus tip paracellular spaces are occa-
sionally somewhat more open (due to solute and water ab-
sorption in the absence of a functioning capillary circulation) .
Short-term exposure (30-40 min) to CD, 10 lug/ml, produced
several alterations in mucosal structure (Fig. 8) which were
confined to the absorptive cells on the upper one half of the
villus. The most striking result was the appearance of a
markedly serrated apical border, produced by rounding of
absorptive cell apices (Fig . 8) . Initially, tissues exposed to 10
lug/ml CD were examined after four durations of exposure :
15, 30, 40, and 60 min . The above structural effects were
inapparent at 15 min and became more readily apparent with
time, and relatively uniform at 30 and 40 min. The structural
effects produced by 10 kg/ml CD varied a great deal in severity
from tissue to tissue after a 60-min exposure, however . Tissues
exposed for 60 min, while often structurally similar to those
described above, occasionally displayed striking villus absorp-
tive cell extrusion associated with marked villus border ser-
ration . For this reason, and since -70-80% of the functional
effect of CD was achieved by 40 min (Fig . 1), we limited our
subsequent flux studies to tissues exposed to CD for 30-40
min .
Asjudged by thin section, absorptive cells on the upper half

of the villus also displayed structural abnormalities of the
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Figures 7 and 8. Light micrographs of guinea pig ileal mucosa 
mounted for 60 min in an Ussing chamber. (Fig. 7) Control prepa- 
ration mounted for 20 min and subsequently exposed to vehicle for 
40 min. The epithelium is intact and the apical border composed of 
absorptive cell brush borders is smooth (arrowheads). Bar, 100 ~m. 
(Fig. 8) Preparation mounted for 20 rain and subsequently exposed 
to 10 ~g/ml CD for 40 min, demonstrating extreme example of 
morphological alteration. While the epithelium is intact, the apical 
border of the villus epithelium is serrated. The serration of the villus 
border induced by CD is produced by apparent rounding of the 
superficial portions of villus absorptive cells (arrowheads), some of 
which produce protuberances which jut into the lumen. Bar, 20 t,m. 

terminal web after 30-40 min of exposure to 10 #g/ml CD. 
Rather than having the typical uniform band of densely 
intermeshed microfllaments underlying the microvillus bor- 
der, spherical aggregates of filaments separated by zones rel- 
atively devoid of terminal web cytoskeletal elements were 
seen (Fig. 9). In these latter areas of terminal web disconti- 
nuity, cytoplasmic organelles such as endoplasmic reticulum 
and mitochondria, which are usually excluded from the ter- 
minal web zone (Fig. 10) (34), closely approached the apical 
membrane (Fig. 9). A preferential site for condensation of 
terminal web cytoskeletal components was at the perijunc- 
tional zone (Fig. 9). Multifocally, at perijunctional sites the 
apical membrane was elevated to a "peak" at the site of the 
occluding junction, and perijunctional microvilli were lost. 

The distribution of terminal web cytoskeletal elements was 
more clearly outlined in detergent-extracted preparations. In 
control tissues and in tissues exposed to concentrations of CD 
which did not elicit a decrease in resistance, the terminal web 
consisted of a uniform web of cytoskeletal elements extending 
as a continuous band across the apical cytoplasm of absorptive 

cells (Fig. 11). The depth of the terminal web was -0.5-0.8 
~,m in control tissues and the density of this zone appeared 
uniform across individual absorptive cells. In contrast, tissues 
exposed to 10 #g/ml CD for 40-60 min often displayed great 
irregularity in the terminal web of absorptive cells located on 
the upper portion of the villus. Terminal web thickness was 
irregularly decreased in these tissues and condensations of 
cytoskeletal elements, most marked in perijunctional areas, 
were observed (Fig. 12). Such perijunctional condensations 
most frequently were in direct apposition with the junctional 
complex membrane (Fig. 12). As seen in unextracted CD- 
exposed tissues, but not in controls, cytoskeletal condensa- 
tions were also occasionally scattered throughout the terminal 
web zone, even in areas removed from the junction. Sections 
cut in a plane roughly parallel to the cell surface and at the 
level of the junctional complex showed that the lateral mem- 
brane at the level of the junctional complex has associated 
with it on the cytoplasmic side a fine, often indistinct, band 
of microfilaments (Fig. 13) which ring the apex of the cell. In 
contrast, CD treatment elicited condensation of the cytoskel- 
etal elements within this ring (Figs. 14 and 15). This feature 
took the appearance of multifocal, dense, and irregular con- 
densation of the microfilaments of this ring zone. Such alter- 
ations were multifocally present within 40 min of exposure 
to 10 ug/ml CD, but were striking and widely distributed by 
60 rain. This effect of CD on perijunctional structure was 
exaggerated at three cell junctions (Figs. 14 and 15). 

Scanning electron micrographs of vehicle control tissues 
revealed villus ridges which displayed relatively smooth sur- 
face contours (Fig. 16) due to the smooth, flat apical surface 
of villus absorptive cells that lined them (Fig. 17). In contrast, 
CD-exposed tissues showed rough cobblestone-like villus sur- 
faces (Fig. 18) due to convexity of absorptive cell surfaces 
(Fig. 19). Such convexities were associated with flaring of 
microvilli as if the neck of cells had been constricted in a 
purse-string fashion (Fig. 19). 

Freeze-fracture images of control tissues revealed absorp- 
tive cell occluding junctions which appeared as a uniform 
band of four to six intermeshed P face strands or E face 
grooves (Fig. 20). Although many similar junctional images 
were observed in tissues exposed to 10 ug/ml CD for 30-40 
min, these later tissues had a structural subset of absorptive 
cell occluding junctions not seen in control tissues. Such 
junctions frequently occurred in areas in which the density of 
microviUi was diminished and thus presumably corresponded 
to foci which, by thin section, displayed perijunctional cyto- 
skeletal condensations with associated loss of perijunctional 
microvilli (Fig. 21). Occluding junctions in these areas con- 
sisted of an irregular array of strands or grooves. In such 
areas, lateral membrane P face intramembrane particles which 
were excluded from the interstrand areas of control occluding 
junctions (Fig. 20) often penetrated the incompletely isolated 
interstrand spaces (Fig. 21). Such junctional areas often con- 
tained sites at which a deformed apical membrane jutted into 
the lumen--a  feature corresponding to the apical membrane 
"peaks" which were noted in thin sections and were seen 
overlying sites that displayed perijunctional cytoskeletal con- 
densations. In some such extremely aberrant junctions, the 
distortion of the apical membrane produced irregular fracture 
planes, which partially obscured apical junctional stands and, 
thus, interfered with quantitative assays of strand counts. 
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Figures 9 and 10. Electron micrographs of villus absorptive cells exposed 40 rain either to vehicle (Fig. 10) or to l0 ug/ml CD (Fig. 9). The cell 
on the fight of Fig, 9 displays a highly condensed aggregate of structural components of the terminal web which are located in a peri-junctional 
position (asterisk). The remainder of the terminal web present in this view is thinned (arrowheads) and organeUes usually restricted from this 
area approach the apical membrane (arrow). Peri-junctional microvilli have been lost from both cells. In contrast, the depth of the terminal 
web is uniform in control tissues (Fig. 10) and peri-junctional microvilli have not been lost. Bar, 1 urn. 

Thus, strand counts given below should underestimate the 
junctional  abnormalities elicited by CD. Other abnormalities 
in absorptive cell occluding junction structure elicited by CD 
included loss of  s trand-strand cross-linking and focal total 
discontinuity (Fig. 22). Analysis of  replicas that contained 
areas of  oriented villi revealed that such abnormalities in 
absorptive cell occluding junction structure were largely 1o- 

calized to the upper portion of the villus. 
Histograms of  absorptive cell occluding junction strand 

count, a structural parameter which often appears to relate to 
junctional resistance (6, 20, 2 I), demonstrated that junctions 
of  tissues exposed to 10 ug/ml CD for either 30 or 60 rain 
had strand counts of  three or less at a much higher frequency 
than did junctions of controls (Fig. 23). 
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Figures 11 and 12. (Fig. 11) Transmission electron micrograph of Triton X-100-extracted villus absorptive cells exposed to vehicle alone for 
40 min. The terminal web (TW) is of uniform density and is not appreciably augmented at junctional zones (arrowheads). Bar, 1 #m. (Fig. 12) 
Transmission electron micrograph of Triton X-100-extracted villus absorptive cells exposed to 10 #g/ml CD for 40 min. Filaments composing 
the terminal web are not matted into a zone of uniform depth and are preferentially condensed in the peri-junctional zone (asterisk). Bar, 1 
/~m. 
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Figures 13-15. Electron micrographs of Triton X-100-extracted control (vehicle, 60 min, Fig. 13) and CD-exposed (10 #g/ml, 60 min, Fig. 
14) mucosal sheets sectioned at the level of the junctional complex in planes roughly parallel to the apical surface. Control (Fig. 13) cells show 
a thin ring.link belt of microfilaments that run parallel to the lateral membrane (arrowheads). In marked contrast, CD exposure (Figs. 14 and 
15) elicits dense irregular condensation of microfilaments in the zone of this ring which may be exaggerated where three cells meet (arrowheads) 
(Figs. 14 and 15). Bars, 1 ~tm. 

Discussion 

Previous studies have shown that, at least in the Madin-Darby 
canine kidney cell line, cytochalasins decrease transepithelial 
resistance and that this effect is predominantly a paracellular 
one as suggested by microelectrode surface scanning studies 
(5, 23, 24). However, parallel quantitative studies of occluding 
junction structure were not performed. Studies performed in 
native epithelia such as Necturus gallbladder (1) and rat liver 
(30) have demonstrated structural effects on occluding junc- 
tions elicited by cytochalasins which included disorganization 
of strands. Although net transepithelial resistance alterations 
(which, depending on dose, varied in direction of change) 
were recorded in one of these studies (1), data which could 
distinguish paracellular from transcellular function were not 
obtained. Given the suggestion that paracellular transport 
might be actively regulated and that, in the intestine, one 
mechanism by which such regulations might be ultimately 
expressed is by cytoskeletal-mediated manipulation of occlud- 
ing junction structure (20), we examined, in detail, the struc- 
ture and function of the occluding junction after cytoskeletal 
perturbation induced by CD. 

We show that transepithelial resistance of guinea pig ileal 
mucosa may be decreased by exposure to CD. Transepithelial 
flux measurements of the intestinal paracellular space marker 
mannitol (8) revealed that the decrease in resistance coincided 
with an increase in mannitol flux and therefore, paracellular 
permeability. Identification of the paracellular pathway as the 
sole or at least predominant site of the CD-induced resistance 
decrease is problematic in an epithelium as geometrically 

complex as the small intestine. The irregular surface contour 
of this epithelium would preclude microelectrode surface 
scanning studies such as those which have been used in 
monolayers to localize paracellular current sinks (24). To 
ascertain if at least the major fraction of the increased perme- 
ability to ions as measured by resistance recordings repre- 
sented ion permeation through the extracellular, mannitol- 
permeable channel induced by CD, we used the approach of 
Dawson (8) in which one simultaneously measures serosal to 
mucosal mannitol and Na ÷ fluxes. Based on the concentration 
of the two molecules used and their relative diffusion coeffi- 
cients, one can assess if the increment in the mannitol- 
permeable (paracellular) pathway fully accounts for the incre- 
ment in passive ion permeability as judged by Na ÷ flux, and 
therefore the decrease in resistance (8). A similar approach 
was used by Freel et al. (11) to pinpoint the paracellular 
pathway as the site at which intestinal passive permeability is 
increased after exposure to the dihydroxy bile salt taurochen- 
odeoxycholate (11). We found that the mannitol-permeable 
channel (i.e., the paracellular channel) fully accounted for the 
increase in passive ion flow across this epithelium. Structural 
studies which showed that ileal epithelium was intact at times 
when paracellular permeability was enhanced rule out the 
possibility that the functional responses measured merely 
represented transepithelial holes produced by necrosis of epi- 
thelial cells. Rather, these studies indicate that the functional 
response is attributable to selective perturbation of paracel- 
lular as opposed to the transcellular pathway. Since the oc- 
cluding junction represents the rate-limiting barrier to passive 
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Figures 16-19. Scanning electron micrographs of vehicle control (Figs. 16 and 17) and CD-exposed (Figs. 18 and 19) (10/~g/ml, 60 min) 
mucosal sheets. The three villus ridges (Fig. 16) display smooth surfaces with intermittent linear folds. As seen in Fig. 17, control villi are 
covered by polygonal absorptive cells with fiat apical surfaces. In contrast, CD-exposed tissues display a cobblestone-like appearance of the 
villus surfaces (Fig. 18). Higher magnification (Fig. 19) shows this cobblestone effect is due to purse-string contraction of the brush borders of 
individual absorptive cells resulting in a convex apical absorptive cell surface and flaring of microvilli. Bars, 20 am. 

paracellular permeability (29), this is the site at which CD 
would logically be assumed to be altering passive permeation 
of  ileal epithelium. Furthermore, since the dominant effect 
on general cellular structure elicited by CD occurred in villus 
absorptive cells, it is likely that the observed increase in 
occluding junction permeability occurs at this specific site 
within the epithelium. The notion that perturbation in ab- 
sorptive cell occluding junction function served as the basis 
for the increased permeability elicited by CD was further 
supported by findings derived from our freeze-fracture stud- 
ies. After CD exposure many absorptive cells displayed either 
structurally perturbed occluding junctions or junctions com- 
posed of  relatively few strands. Since occluding junction 
strands appear to represent the site of  the resistive barrier to 
passive ion flow (6, 21, 22, 29), a decrease in transepithelial 
resistance due to an increase in paracellular conductance 
would be expected and was observed. Given these gross 
distortions in occluding junction structure, it is not surprising 
that, as indicated by dilution potentials, the ability of  occlud- 
ing junctions to discriminate between cations and ions was 

also grossly impaired. Since CD-induced cytoskeletal disrup- 
tion may effect many intracellular processes, we cannot be 
certain of the exact intracellular events responsible for the 
observed structural and functional alterations in absorptive 
cell occluding junctions. 

Our results with the dual flux studies allow us to offer 
additional speculation relating to the nature of  the permeable 
sites ("pores") within the occluding junction strands. This 
relationship did not pass through the origin but rather had an 
Na ÷ axis intercept substantially different than 0. Furthermore, 
the Na ÷ intercept is ~80% of the value of the Na ÷ flux rate 
across tissues unexposed to CD (9.8 uEq/h.cm2), and it is 
known that, in this epithelium, the majority of  the passive 
Na ÷ flux takes a transjunctional route (12). Thus, these data 
suggest that only a small subpopulation of normal junctional 
pores permeable to Na ÷ are also permeable to mannitol. Thus, 
junctional pores may be somewhat heterogeneous in size with 
the major population restrictin~ permeation by molecules 
with hydrodynamic radii of  3.6 A or greater. A second obser- 
vation that the increment of  CD-elicited Na ÷ flux is less than 
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Figures 20 and 21. Freeze-fracture replicas of villus absorptive cell 
occluding junctions. (Fig. 20) Control junctions are composed of a 
net-like mesh of cross-linked strands or grooves. Peri-junctional mi- 
crovilli are densely aligned above the junction. Bar, 0. I ~m. (Shadow 
angle, approximately left to right.) (Fig. 21) Junction exposed to 10 
#g/ml CD for 40 min. Junction is composed of an irregular array of 
strands that underlie occasional broad protrusions of the apical mem- 
brane (arrowheads). Geometric irregularities produced by such pro- 
trusions result in a fracture plane which only focally includes the 
apical-most strand (straight arrows). Many peri-junctional microvilli 
are lost and intramembrane particles penetrate into the incompletely 
isolated intrajunctional compartments (curved arrow). Bars, 0. l #m. 
(Shadow angle, approximately left to right.) 

expected (given the size of  the increment in mannitol  flux) is 
also of interest. If  CD exposure resulted in the introduction 
of a series of "new" hydrophilic channels permeable to man- 
nitol, then obviously these channels would be permeable to 
Na ÷ given the relative sizes of  the hydrated radii of these 

Figure 22. Freeze-fracture replica of absorptive cell occluding junc- 
tion from epithelial sheet exposed in vitro to CD (10 #g/ml) for 40 
rain. Parallel strands deficient in cross-linking are present on the P 
face as is a focal trans-junctional discontinuity on the E face (arrow). 
Peri-junctional microvilli are diminished in number at this junctional 
site, corresponding to the thin section images in areas of perijunc- 
tional cytoskeletal plaques. Bar, 0.1 #m. (Shadow angle, approxi- 
mately left to right.) 

[ ]  Control 
[ ]  CD, 10pg/m130 rain, 
[ ]  C D, 10 p(J/ml 60 min, 

0 i 2 3 4 5 6 7 8 9 >9 

STRANDS 
Figure 23. Histogram of absorptive cell occluding junction strand 
counts from control epithelial sheets and from epithelial sheets ex- 
posed to 10 #g/ml CD for 30 or 60 rain. CD exposure results in an 
increased frequency of occluding junctions having few strands. 

molecules. One interpretation of the observed data is that CD 
alters the conformation of some junctional pores without 
substantially altering their cross-sectional area, and this spec- 
ulative conformational change permits mannitol permeabil- 
ity. 

We have previously suggested that, due to the nature of  the 
transepithelial resistance measurement, relatively minor alter- 
ations in junctional permeability would produce substantial 
alterations in resistance (22). Thus the initial introduction of 
a small subpopulation of permeable junctions might lower 
resistance before obvious alterations were detected in mean 
parameters of junctional permeability, such as flux measure- 
ments. The current data which show asymptotic relationships 
between resistance and flux measurements of permeability 
support this view. Thus, trivial increments in mannitol or 
Na ÷ permeability are associated with rapidly falling resist- 
ances. As mannitol- and Na+-permeable pathways begin to 
appear at higher frequency, major alterations in flux rates 
occur but are paired with more minor  alterations in resistance. 
Thus, while flux data represent an averaged functional assay 
of  permeability, resistance data are skewed toward the func- 
tion of  minor  populations of  pathways with low resistance to 
passive flow. 

In addition to altering occluding junction structure and 
function, CD elicited the appearance of aggregated cytoskel- 
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etal elements in the perijunctional zone. This is the site at 
which a dense circumferential ring of actin (13) and myosin 
(13) exists both in intestinal (13, 15) and in many other 
epithelia (14, 26). Although the major site at which elements 
of this ring associate with the lateral membrane is at the level 
of the intermediate junction (13), a minor association between 
this ring and the lateral membrane at the level of the occluding 
junction appears also to exist in at least some epithelia (14). 
In permeabilized epithelia, ATP elicits contraction of this ring 
(4, 13, 16, 17, 32) by a process which is dependent on the 
presence of myosin (4) and on phosphorylation of myosin 
light chain ( 16, 17). The CD-elicited cytoskeletal plaques may 
represent contraction of segments of this ring. Schilwa (33) 
observed similar plaques of filamentous material following 
exposure of cultured green monkey kidney ceils to CD. Based 
on stereo imaging data and on analysis of material released 
from the cytoskeleton by CD, he concluded that such plaques 
represent contraction of cytoskeletal segments isolated from 
one another after random multifocal disruption of actin mi- 
crofilaments (33). Other studies suggest that cytochalasins 
may affect actin gels by inhibiting actin filament interaction 
with other actin filaments (19) or by inhibiting actin polym- 
erization (3, 10, 19). Recent observations indicate that, al- 
though cytochalasin B may effect actin polymerization in 
vitro by slowing monomer addition to the barbed end of 
microfilaments, it also induces actin filament fragility (2). As 
a result of this fragility, gentle shear forces may result in 
severing of actin microfilaments (2). It is possible that the 
absorptive cell contractile ring normally experiences gentle 
shear forces. Such forces could result from tension intrinsic 
to the ring or from the flow of lumenal content over the cell 
surface. Superimposed cytochalasin-induced actin filament 
fragility might result in microfilament severing under these 
conditions and thus a reduction in actin filament length. 
Subsequent interaction of "fractured" fragments with myosin 
could result in contractile condensation of these elements. 
This latter suggestion is based on recent observations obtained 
from purified actin preparations in which it was noted that 
modest reductions of actin filament length generated an en- 
hancement of actomyosin ATPase activity (7). Such a se- 
quence would fit our observations, and would also account 
for the CD-elicited actin fragment release from cytoskeletal 
preparations observed by Schliwa (33). Furthermore, contrac- 
tion of elements of the peri-junctional actin-myosin ring 
might well increase the tension on the lateral membrane at 
the site of the junctional complex since, as noted above, 
elements of this ring appear to associate with the lateral 
membrane at this site. Mechanical tension has been reported 
to produce structural rearrangement of occluding junctions 
in other epithelia (28) and, in general, occluding junction 
structure and permeability are closely linked (5, 6, 9, 20-24, 
27). We speculate that the tensile state of this ring in intestinal 
absorptive cells may influence occluding junction structure 
and thereby may exert effects on and potentially regulate 
transepithelial permeability and paracellular transport in in- 
tact intestinal epithelium. 
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