Using hexokinase, glucose, and ATP to vary reversibly the concentrations of ADP and ATP in solution and bound to Acanthamoeba actin, I measured the relative critical concentrations and elongation rate constants for ATP-actin and ADP-actin in 50 mM KCl, 1 mM MgCl2, 1 mM EGTA, 0.1 mM nucleotide, 0.1 mM CaCl2, 10 mM imidazole, pH 7. By both steady-state and elongation rate methods, the critical concentrations are 0.1 microM for ATP-actin and 5 microM for ADP-actin. Consequently, a 5 microM solution of actin can be polymerized, depolymerized, and repolymerized by simply cycling from ATP to ADP and back to ATP. The critical concentrations differ, because the association rate constant is 10 times higher and the dissociation rate constant is five times lower for ATP-actin than ADP-actin. These results show that ATP-actin occupies both ends of actin filaments growing in ATP. The bound ATP must be split on internal subunits and the number of terminal subunits with bound ATP probably depends on the rate of growth.
Skip Nav Destination
Article navigation
1 September 1984
Article|
September 01 1984
Polymerization of ADP-actin.
T D Pollard
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1984) 99 (3): 769–777.
Citation
T D Pollard; Polymerization of ADP-actin.. J Cell Biol 1 September 1984; 99 (3): 769–777. doi: https://doi.org/10.1083/jcb.99.3.769
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement