The Holocentrus erythrophore, a red pigment cell, represents a model system for the study of organized intracellular transport. We have investigated the possibility that microtubules and actin are integral components of the pigment translocating motility machine. By creating cells that have total or partial loss of the microtubule framework we have demonstrated that the presence of microtubules is essential for organized, radial transport of the pigment granules. However, in the absence of microtubules, some undirected movement of the pigment can be stimulated; this suggests that a nonmicrotubular component of the cytoplast is responsible, at least in part, for the generation of motive force. In order to test the hypothesis that this component consists of actin or actomyosin, we examined the effects of probes for these classical motility proteins. Neither microinjection of phalloidin, DNase I or N-ethylmaleimide-modified heavy meromyosin nor exogenous application of cytochalasin B has any effect on pigment motion, although these materials do block the actin-mediated motility of other systems in our hands. Therefore, intracellular particle transport in erythrophores does not appear to be actin or actomyosin-based.
Skip Nav Destination
Article navigation
1 February 1983
Article|
February 01 1983
Analysis of the role of microtubules and actin in erythrophore intracellular motility.
M C Beckerle
K R Porter
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1983) 96 (2): 354–362.
Citation
M C Beckerle, K R Porter; Analysis of the role of microtubules and actin in erythrophore intracellular motility.. J Cell Biol 1 February 1983; 96 (2): 354–362. doi: https://doi.org/10.1083/jcb.96.2.354
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement