Cell extracts and conditioned media (CM) from cultured bovine aortic endothelial cells (BAEs) were fractionated by PAGE in the presence SDS, and plasminogen activator (PA) activity was localized by fibrin autography. Multiple molecular weight forms of PA were detected in both preparations. Cell-associated PAs had Mr of 48,000, 74,000, and 100,000 while secreted PAs showed Mr of 52,000, 74,000, and 100,000. A broad zone of activity (Mr 80,000-100,000) also was present in both cellular fractions. In addition, PAs of Mr 41,000 and 30,000 appeared upon prolonged incubation or repeated freezing and thawing of the samples, and probably represent degradation products of higher molecular weight forms. This complex lysis pattern was not observed when CM was subjected to isoelectric focusing. Instead, only two classes of activator were resolved, one at pH 8.5, the other at 7.6. Analysis of focused samples by SDS PAGE revealed that the activity at pH 8.5 resulted exclusively from the Mr 52,000 form; all other forms were recovered at pH 7.6. The activity of the Mr 52,000 form was neutralized by anti-urokinase IgG but was not affected by antitissue activator IgG indicating that it is a urokinaselike PA. The activities of the Mr 74,000-100,000 forms were not affected by anti-urokinase. They were blocked by antitissue activator suggesting that all the forms in this group were tissue-type PAs. The multiple forms of PA were differentially sensitive to inactivation by diisopropylfluorophosphate (DFP). Treatment of CM with 10 mM DFP for 2 h at 37 degrees C only partially inhibited the 52,000-dalton form. However, it completely inactivated the 74,000-dalton partially inhibited the 52,000-dalton form. However, it completely inactivated the 74,000-dalton PA. The activity of the Mr 100,000 form was not affected by this treatment, or by treatment with 40 mM DFP. Thus, cultured BAEs produce multiple, immunologically distinct forms of PA which differ in size, charge, and sensitivity to DFP. These forms include both urokinaselike and tissue-activator-like PAs. The possibility that one of these forms is a zymogen is discussed.

This content is only available as a PDF.