Properties of the sliding disintegration response of demembranated tetrahymena cilia have been studied by measuring the spectrophotomeric response or turbidity of cilia suspensions at a wavelength of 350 nm relative to changes in the dynein substrate (MgATP(2-)) concentration. The maximum decrease in turbidity occurs in 20 muM ATP, and 90 percent of the decrease occurs in approximately 5.9 s. At lower ATP concentrations (1-20 muM), both the velocity and magnitude of the turbidity decreases are proportional to ATP concentration. The velocity data for 20 muM ATP permit construction of a reaction velocity curve suggesting that changes in turbidity are directly proportional to the extent and velocity of disintegration. At ATP concentrations more than 20 muM (50muM to 5mM), both velocity and magnitude of the turbidimetric response are reduced by approximately 50 percent. This apparent inhibition results in a biphasic response curve that may be related to activation of residual shear resistance or regulatory components at the higher ATP concentrations. The inhibitory effects of elevated ATP can be eliminated by mild trypsin proteolysis, whereupon the reaction goes to completion at any ATP concentration. The turbidimetric responses of the axoneme-substrate suspensions are consistent with the extent and type of axoneme disintegration revealed by electron microscope examination of the various suspensions, suggesting that the turbidimetric assay may prove to be a reliable means for assessing the state of axoneme integrity.
Skip Nav Destination
Article navigation
1 August 1980
Article|
August 01 1980
Properties of microtubule sliding disintegration in isolated tetrahymena cilia
FD Warner
NC Zanetti
Online ISSN: 1540-8140
Print ISSN: 0021-9525
1980
J Cell Biol (1980) 86 (2): 436–445.
Citation
FD Warner, NC Zanetti; Properties of microtubule sliding disintegration in isolated tetrahymena cilia . J Cell Biol 1 August 1980; 86 (2): 436–445. doi: https://doi.org/10.1083/jcb.86.2.436
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement