Epithelial cells in explants from the mammary glands of euthyroid mature virgin mice are proliferatively dormant. They must undergo DNA synthesis and traverse the cell cycle in vitro before they are able to differentiate fully in response to insulin, hydrocortisone, and prolactin, and synthesize enzymatically active alpha-lactalbumin (measured as lactose synthetase activity). In contrast, glands from hyperthyroid mature virgin mice do not require DNA synthesis in vitro to differentiate. Explants from the euthyroid virgin tissue overcome their dependence on DNA synthesis when 10(-9) M 3,5,3'-triiodo-L-thyronine is added directly to the cultures in addition to the other three hormones. Explants from involuted mammary glands from euthyroid primiparous mice do not require DNA synthesis in vitro to make the milk protein even though they, like explants from mature euthyroid virgin tissue, are proliferatively dormant and do not contain detectable lactose synthetase activity in vivo. Glands from primiparous animals made mildly hypothyroid by ingestion of 0.1% thiouracil in drinking water during 7 wk of involution remain morphologically indistinguishable from glands of their euthyroid counterparts. However, explants from the glands of these hypothyroid animals revert to a state of dependence on DNA synthesis to differentiate functionally. These observations suggest that the dependence on DNA synthesis and cell cycle traversal for hormonal induction of lactose synthetase activity in the mouse mammary gland is controlled by thyroid hormones.

This content is only available as a PDF.
You do not currently have access to this content.