Freeze-fracture electron microscopy was used to examine the structure of a region of plasma membrane that undergoes continual, unidirectional shear. Membrane shear arises from the continual clockwise rotation of one part (head) of a termite flagellate relative to the rest of the cell. Freeze-fracture replicas show that the lipid bilayer is continuous across the shear zone. Thus, the relative movements of adjacent membrane regions are visible evidence of membrane fluidity. The distribution and density of intramembrane particles within the membrane of the shear zone is not different from that in other regions of the cell membrane. Also, an additional membrane shear zone arises when body membrane becomes closely applied to the rotating axostyle as cells change shape in vitro. This suggests that the entire membrane is potentially as fluid as the membrane between head and body but that this fluidity is only expressed at certain locations for geometrical and/or mechanical reasons. Membrane movements may be explained solely by cell shape and proximity to rotating structures, although specific membrane-cytoskeletal connections cannot be ruled out. The membrane of this cell may thus be viewed as a fluid which adheres to the underlying cytoplasm/cytoskeleton and passively follows its movements.
Skip Nav Destination
Article navigation
1 January 1979
Article|
January 01 1979
Membrane movements and fluidity during rotational motility of a termite flagellate. A freeze-fracture study.
S L Tamm
Online ISSN: 1540-8140
Print ISSN: 0021-9525
J Cell Biol (1979) 80 (1): 141–149.
Citation
S L Tamm; Membrane movements and fluidity during rotational motility of a termite flagellate. A freeze-fracture study.. J Cell Biol 1 January 1979; 80 (1): 141–149. doi: https://doi.org/10.1083/jcb.80.1.141
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement