Techniques of cell separation were used to isolate murine erythroid precursors at different states of maturation. Cells were studied before and after short-term incubation in the presence or absence of erythropoietin. Complementary results were obtained by direct examination of the cell fractions and by the short-term culture experiments. Indices of heme synthesis, including incorporation of 59Fe or [2-14C]glycine into heme and activity of delta-aminolevulinic acid synthetase, were already well developed in the least mature cells, chiefly pronormoblasts. Activity then rose moderately in the cell fractions consisting primarily of basophilic and polychromatophilic normoblasts, and fell off with further increases in cell maturity. On short-term culture in the presence of erythropoietin, activity declined with increasing cell maturation except in the least mature fraction where the original level of activity was maintained. By contrast, synthesis of labeled hemoglobin ([3H]leucine) was very low in the least mature cell fractions and rose progressively with increasing cell maturity. The rate of hemoglobin synthesis increase in cells at all stages of maturation when cultured in the presence of erythropoietin. Despite the different patterns observed for heme synthesis and hemoglobin synthesis, both synthetic activities were consistently higher in cells cultured with erythropoietin as compared to controls. These findings suggest that erythropoietin stimulates biochemical differentiation of erythroid precursors at various stages of maturation. They also demonstrate an asynchronism between heme synthesis and hemoglobin syhthesis; heme synthesis is already well developed in the least mature erythroid cells and begins to diminish as the capacity for hemoglobin synthesis continues to rise.

This content is only available as a PDF.
You do not currently have access to this content.