Ribonucleoprotein (RNP) particles containing the precursors of ribosomal RNA were extracted from L cell nucleoli and analyzed under conditions comparable to those used in the characterization of cytoplasmic ribosomes. Using nucleoli from cells suitably labeled with 3H-uridine, we detected three basic RNP components, sedimenting at approximately 62S, 78S, and 110S in sucrose gradients containing magnesium. A fourth particle, sedimenting at about 95S, appears to be a dimer of the 62S and 78S components. When centrifuged in gradients containing EDTA, the 62S, 78S, and 110S particles sediment at about 55S, 65S, and 80S, respectively. RNA was extracted from RNP particles which were prepared by two cycles of zonal centrifugation. The 62S particles yielded 32S RNA and a detectable amount of 28S RNA, the 78S structures, 32S RNA and possibly some 36S RNA, and the 110S particles, a mixture of 45S, 36S, and 32S RNA's. When cells were pulsed briefly and further incubated in the presence of actinomycin D, there was a gradual shift of radioactivity from heavier to lighter particles. This observation is consistent with the scheme of maturation: 110S → 78S → 62S. The principal buoyant densities in cesium chloride of the 110S, 78S, and 62S particles are 1.465, 1.490, and 1.545, respectively. These densities are all significantly lower than 1.570, which is characteristic of the mature large subunit of cytoplasmic ribosomes, suggesting that the precursor particles have a relatively higher ratio of protein to RNA, and that ribosome maturation involves, in addition to decrease in the size of the RNA molecules, a progressive decrease in the proportion of associated protein.

This content is only available as a PDF.
You do not currently have access to this content.