Addition of Triton X-100 to chloroplast suspensions to a final concentration of 100–200 µM causes an approximate tripling of chloroplast volume and complete inhibition of light-induced conformational changes, light-dependent hydrogen ion transport, and photophosphorylation. Electron microscopic studies show that chloroplasts treated in this manner manifest extensive swelling in the form of vesicles within their inner membrane structure. Triton was adsorbed to chloroplast membranes in a manner suggesting a partition between the membrane phase and the suspending medium, rather than a strong, irreversible binding. This adsorption results in the production of pores through which ions may freely pass, and it is suggested that the inhibition of conformational changes, hydrogen ion transport, and photophosphorylation by Triton is due to an inability of treated chloroplast membranes to maintain a light-dependent pH gradient. The observed swelling is due to water influx in response to a fixed, osmotically active species within the chloroplasts, after ionic equilibrium has occurred. This is supported by the fact that chloroplasts will shrink upon Triton addition if a nonpenetrating, osmotically active material such as dextran or polyvinylpyrrolidone is present externally in sufficient concentration (>0.1 mM) to offset the osmotic activity of the internal species.

This content is only available as a PDF.
You do not currently have access to this content.