A morphological basis for transcellular potassium transport in the midgut of the mature fifth instar larvae of Hyalophora cecropia has been established through studies with the light and electron microscopes. The single-layered epithelium consists of two distinct cell types, the columnar cell and the goblet cell. No regenerative cells are present. Both columnar and goblet cells rest on a well developed basement lamina. The basal portion of the columnar cell is incompletely divided into compartments by deep infoldings of the plasma membrane, whereas the apical end consists of numerous cytoplasmic projections, each of which is covered with a fine fuzzy or filamentous material. The cytoplasm of this cell contains large amounts of rough endoplasmic reticulum, microtubules, and mitochondria. In the basal region of the cell the mitochondria are oriented parallel to the long axes of the folded plasma-lemma, but in the intermediate and apical portions they are randomly scattered within the cytoplasmic matrix. Compared to the columnar cell, the goblet cell has relatively little endoplasmic reticulum. On the other hand, the plications of the plasma membrane of the goblet cell greatly exceed those of the columnar cell. One can distinguish at least four characteristic types of folding: (a) basal podocytelike extensions, (b) lateral evaginations, (c) apical microvilli, and (d) specialized cytoplasmic projections which line the goblet chamber. Apically, the projections are large and branch to form villus-like units, whereas in the major portion of the cavity each projection appears to contain an elongate mitochondrion. Junctional complexes of similar kind and position appear between neighboring columnar cells and between adjacent columnar and goblet cells as follows: a zonula adherens is found near the luminal surface and is followed by one or more zonulae occludentes. The morphological data obtained in this study and the physiological information on ion transport through the midgut epithelium have encouraged us to suggest that the goblet cell may be the principal unit of active potassium transport from the hemolymph to the lumen of the midgut. We have postulated that ion accumulation by mitochondria in close association with plicated plasma membranes may play a role in the active movement of potassium across the midgut.
Skip Nav Destination
Article navigation
1 October 1966
Article|
October 01 1966
ACTIVE TRANSPORT BY THE CECROPIA MIDGUT : II. Fine Structure of the Midgut Epithelium
Everett Anderson,
Everett Anderson
From the Department of Zoology, The University of Massachusetts, Amherst
Search for other works by this author on:
William R. Harvey
William R. Harvey
From the Department of Zoology, The University of Massachusetts, Amherst
Search for other works by this author on:
Everett Anderson
From the Department of Zoology, The University of Massachusetts, Amherst
William R. Harvey
From the Department of Zoology, The University of Massachusetts, Amherst
Received:
March 09 1966
Online ISSN: 1540-8140
Print ISSN: 0021-9525
Copyright © 1966 by The Rockefeller University Press
1966
J Cell Biol (1966) 31 (1): 107–134.
Article history
Received:
March 09 1966
Citation
Everett Anderson, William R. Harvey; ACTIVE TRANSPORT BY THE CECROPIA MIDGUT : II. Fine Structure of the Midgut Epithelium . J Cell Biol 1 October 1966; 31 (1): 107–134. doi: https://doi.org/10.1083/jcb.31.1.107
Download citation file:
Sign in
Don't already have an account? Register
Client Account
You could not be signed in. Please check your email address / username and password and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement