Skip to Main Content
Skip Nav Destination

Intermediate filaments (IFs) are fibrous polymers encoded by a large family of differentially expressed genes that provide crucial structural support in the cytoplasm and nucleus in higher eukaryotes. The mechanisms involved in bringing together ∼16 elongated coiled-coil dimers to form an IF are poorly defined. Available evidence suggests that tetramer subunits play a key role during IF assembly and regulation. Through molecular modeling and site-directed mutagenesis, we document a hitherto unnoticed hydrophobic stripe exposed at the surface of coiled-coil keratin heterodimers that contributes to the extraordinary stability of heterotetramers. The inability of K16 to form urea-stable tetramers in vitro correlates with an increase in its turnover rate in vivo. The data presented support a specific conformation for the assembly competent IF tetramer, provide a molecular basis for their differential stability in vitro, and point to the physiological relevance associated with this property in vivo.

You do not currently have access to this content.
Don't already have an account? Register

or Create an Account

Close Modal
Close Modal