Specific integrins expressed on oligodendrocytes, the myelin-forming cells of the central nervous system, promote either differentiation and survival or proliferation by amplification of growth factor signaling. Here, we report that the Src family kinases (SFKs) Fyn and Lyn regulate each of these distinct integrin-driven behaviors. Fyn associates with α6β1 and is required to amplify platelet-derived growth factor survival signaling, to promote myelin membrane formation, and to switch neuregulin signaling from a phosphatidylinositol 3-kinase to a mitogen-activated protein kinase pathway (thereby changing the response from proliferation to differentiation). However, earlier in the lineage Lyn, not Fyn, is required to drive αVβ3-dependent progenitor proliferation. The two SFKs respond to integrin ligation by different mechanisms: Lyn, by increased autophosphorylation of a catalytic tyrosine; and Fyn, by reduced Csk phosphorylation of the inhibitory COOH-terminal tyrosine. These findings illustrate how different SFKs can act as effectors for specific cell responses during development within a single cell lineage, and, furthermore, provide a molecular mechanism to explain similar region-specific hypomyelination in laminin- and Fyn-deficient mice.
Integrins direct Src family kinases to regulate distinct phases of oligodendrocyte development
H. Colognato's present address is Dept. of Pharmacology, State University of New York at Stony Brook, Stony Brook, NY 11794.
Abbreviations used in this paper: Csk, COOH-terminal Src kinase; ERK, extracellular signal–related kinase; FN, fibronectin; GalC, galactocerebroside; Lm2, laminin-2; MAG, myelin-associated glycoprotein; MBP, myelin basic protein; NRG, neuregulin; PDGFαR, PDGFα receptor; PDL, poly-d-lysine; SFK, Src family kinase; siRNA, small interfering RNA.
Holly Colognato, Shwetha Ramachandrappa, Inger M. Olsen, Charles ffrench-Constant; Integrins direct Src family kinases to regulate distinct phases of oligodendrocyte development . J Cell Biol 25 October 2004; 167 (2): 365–375. doi: https://doi.org/10.1083/jcb.200404076
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionSuggested Content
Email alerts
Advertisement
Advertisement