A bold new theory suggests that retroviruses have hijacked an intercellular communication system for both their biogenesis and spread. The concept, outlined by Stephen Gould, Amy Booth, and James Hildreth (Johns Hopkins University, Baltimore, MD) has implications for HIV treatment and immunization strategies, and may explain why tissue rejection occurs in humans.

Hildreth was looking at human proteins that HIV acquires during its biogenesis, and noticed that lysosomal proteins were in the mix. This ties in with recent findings in this and other journals that HIV is packaged in late endosomes (for review see Amara and Littman, 2003).

In uninfected cells, this endosomal compartment invaginates to form small, internal vesicles. The bag of vesicles, or multivesicular body, can fuse with the plasma membrane to disgorge these vesicles, named exosomes, which then travel to other cells to transmit messages. In the immune system, exosomes transfer peptide-laden...

You do not currently have access to this content.