Kinetoplast DNA (kDNA), the mitochondrial DNA of the trypanosomatid Crithidia fasciculata, is a unique structure containing 5,000 DNA minicircles topologically linked into a massive network. In vivo, the network is condensed into a disk-shaped structure. Replication of minicircles initiates at unique origins that are bound by universal minicircle sequence (UMS)-binding protein (UMSBP), a sequence-specific DNA-binding protein. This protein, encoded by a nuclear gene, localizes within the cell's single mitochondrion. Using immunofluorescence, we found that UMSBP localizes exclusively to two neighboring sites adjacent to the face of the kDNA disk nearest the cell's flagellum. This site is distinct from the two antipodal positions at the perimeter of the disk that is occupied by DNA polymerase β, topoisomerase II, and a structure-specific endonuclease. Although we found constant steady-state levels of UMSBP mRNA and protein and a constant rate of UMSBP synthesis throughout the cell cycle, immunofluorescence indicated that UMSBP localization within the kinetoplast is not static. The intramitochondrial localization of UMSBP and other kDNA replication enzymes significantly clarifies our understanding of the process of kDNA replication.
Intramitochondrial Localization of Universal Minicircle Sequence-Binding Protein, a Trypanosomatid Protein That Binds Kinetoplast Minicircle Replication Origins
D.R. Robinson's present address is Laboratoire de Parasitologie Moléculaire, UMR-CNRS, 33076 Bordeaux Cedex, France.
Abbreviations used in this paper: CaBP, calcium-binding protein; kDNA, kinetoplast DNA; pol, DNA polymerase; SSE1, structure-specific endonuclease I; TdT, terminal deoxynucleotidyl transferase; UMS, universal minicircle sequence; UMSBP, UMS-binding protein.
Kawther Abu-Elneel, Derrick R. Robinson, Mark E. Drew, Paul T. Englund, Joseph Shlomai; Intramitochondrial Localization of Universal Minicircle Sequence-Binding Protein, a Trypanosomatid Protein That Binds Kinetoplast Minicircle Replication Origins. J Cell Biol 14 May 2001; 153 (4): 725–734. doi: https://doi.org/10.1083/jcb.153.4.725
Download citation file:
Sign in
Client Account
Sign in via your Institution
Sign in via your InstitutionEmail alerts
Advertisement
Advertisement